مروری بر کاربرد مواد هوشمند در منسوجات

نوع مقاله : مقاله مروری

نویسندگان

1 1-دانشکده فنی و مهندسی، گروه پلیمر، مهندسی شیمی و نساجی، دانشگاه آزاد اسلامی واحد تهران جنوب، تهران، ایران، 2-باشگاه پژوهشگران جوان

2 دانشکده فنی و مهندسی، گروه مهندسی نساجی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران، کد پستی: ۱۴۷۷۸۹۳۸۵۵

3 1-عضو هیات علمی دانشکده فنی و مهندسی دانشگاه آزاد اسلامی تهران جنوب 2-مرکز تحقیقات فناوری نانو، دانشگاه آزاد اسلامی، واحد تهران جنوب

چکیده

پیشرفت و ارتقای جوامع بشری، باعث تغییرات و تحولات گسترده‌ای در مواد و مصنوعات آن‌ها شده و منجر به ظهور مواد هوشمند به‌عنوان نقطه عطفی در سیر تحولات و شده است. گستره استفاده مواد هوشمند در صنعت نساجی بسیار محسوس بوده و تحقیقات گسترده‌ای در این زمینه انجام شده است که در نهایت منجر به معرفی منسوجات هوشمند به بازار مصرف گردید. هدف اصلی این تحقیق، معرفی و دسته‌بندی مواد هوشمند کاربردی در منسوجات است. در این راستا ابتدا مبانی نظری در مورد مواد هوشمند مطرح و سپس دسته بندی آن‌ها از دیدگاه‌های مختلف بررسی گردید. این مواد در مدلهای رایج نظیر مدل بیولوژیکی به سه دسته (حسگرها/عصب­ها و نورون­های آوران)، عملگرها (عضلات) و پردازشگرها(مغز)، و یا براساس مدل ساختاری مجدد به سه ساختار (حسی یا انفعالی، عملگرا یا فعال و هوشمند یا انطباقی) تقسیم می‌شوند. ولیکن در تحقیق حاضر جهت تطابق بیشتر با منسوجات مدلی کاربردی معرفی شد که مواد هوشمند را به دو دسته پاسخگر عملگرا و یا مبدل انرژی تقسیم می‌نماید و کلیه مواد هوشمند ذیل آنها دسته بندی شدند. برای هرکدام از مواد مثالی کاربردی و یا مرتبط با منسوجات آورده شد. نتیجه گیری شد که مدل کاربردی نسبت به مدل‌های موجود همگرایی بیشتری با منسوجات دارد. از سوی دیگر مشخص شد گردید که تداوم رشد منسوجات هوشمند با سرعتی فزآینده ادامه دارد هرچند که در برخی از حوزه ها هنوز نیاز به تحقیقات و تجربیات بیشتر محسوس است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of smart materials for textile: a review

نویسندگان [English]

  • Niloofar Rafizadeh Zaeem 1
  • kamelia yaghoubi 2
  • Ramin Khajavi 3
1 Faculty of Engineering, Department of Polymer, Chemical Engineering and Textile, South Tehran Branch, Islamic Azad University, Tehran, Iran, Postal Code:1584743311
2 Faculty of Engineering, Department of Textile Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran, Postal Code: 1477893855
3 Faculty of Engineering, Department of Polymer, Chemical Engineering and Textile, South Tehran Branch, Islamic Azad University, Tehran, Iran, Postal Code:1584743311
چکیده [English]

The progress and improvement of human societies caused extensive changes and transformations in materials and their artifacts and led to the emergence of smart materials as a turning point in the course of developments. The range of use of smart materials in the textile industry is very noticeable and extensive research has been done in this field, which finally led to the introduction of smart textiles to the consumer market. The main purpose of this research is the Introduction and classification of smart materials applied in textiles. In this regard, first The theoretical foundations of smart materials are presented, and then their classification from different points of view. These materials are divided into three categories in common models such as the biological model(sensors/nerves and afferent neurons), operators (muscles) and processors (brain), or the structural model (sensory or passive, pragmatic or active, and intelligent or adaptive). But in the present research, in order to be more consistent with textiles a practical model was introduced, which divides smart materials into two categories: practical responders or energy converters, and all smart materials were categorized under them. For each material, a practical example or one related to textiles was given. It was concluded that the applied model is more convergent than the existing models with textiles. On the other hand, it was found that the growth of smart textiles continues at an increasing pace, although in some areas, there is still a need for more research and experience.

کلیدواژه‌ها [English]

  • smart materials
  • smart textiles
  • reactive materials
  • energy converting materials
  • stimulus
[1]   N. Rafizadeh Zaeem and K. Karami, "An Investigation on Blood Barrier and Antibacterial Properties of Fluorocarbon and Gentamicin Coated Textiles," Applied Nanomaterials and Smart Polymers, vol. 1, pp. 1-11, 2023.
    [2]R. Khajavi, N. Rafizadeh Zaeem, Z. Assgharpour, and M. K. Rahimi, "Polypropylene non-woven coating with lipid/carboxymethyl cellulose/nanosilver nanomulsion for wound dressese application," Journal of Textile Science and Technology, vol. 6, pp. 23-29, 2017.
[3]   M. Abbasipour, M. Mirjalili, R. Khajavi, and M. M. Majidi, "Coated cotton gauze with Ag/ZnO/chitosan nanocomposite as a modern wound dressing," Journal of Engineered Fibers and Fabrics, vol. 9, p. 155892501400900114, 2014.
[4]      M. Ahrari, R. Khajavi, M. K. Dolatabadi, T. Toliyat, and A. Rashidi, "A review on application of phase change materials in textiles finishing," International Journal of Materials and Metallurgical Engineering, vol. 11, pp. 400-405, 2017.
[5]          A. Berendjchi, R. Khajavi, A. A. Yousefi, and M. E. Yazdanshenas, "Improved continuity of reduced graphene oxide on polyester fabric by use of polypyrrole to achieve a highly electro-conductive and flexible substrate," Applied Surface Science, vol. 363, pp. 264-272, 2016.
[6]          N. Goddard, R. Kemp, and R. Lane, "An overview of smart technology," Packaging Technology and Science: An International Journal, vol. 10, pp. 129-143, 1997.
[7]          J. A. Harvey, "Smart materials," M. KUTZ, Hg. Handbook of Materials Selection. New York (USA): John Wiley & Sons, Inc, pp. 401-418, 2002.
[8]          C. M. Hussain and P. Di Sia, Handbook of smart materials, technologies, and devices: applications of industry 4.0: Springer Nature, 2022.
[9]          L. Berglin, "Interactive Textile Structures Creating Multifunctional Textiles based on Smart Materials [Electronic resource]," PhD Thesis/LTH Berglin.–Gothenburg, Sweden: Department of Computer Science ….
[10]        M. Abbasipour and R. Khajavi, "Electrospun Nanofibers for Energy Harvesting," in Electrospun Nanofibers: Principles, Technology and Novel Applications, ed: Springer, 2022, pp. 721-736.
[11]        M. Addington and D. Schodek, "Smart materials and new technologies. Burlington, MA," ed: USA: Elsevier, 2005.
[12]        I. N. Qader, K. Mediha, F. Dagdelen, and Y. AYDOĞDU, "A review of smart materials: researches and applications," El-Cezeri, vol. 6, pp. 755-788, 2019.
[13]        N. Chamankar, R. Khajavi, A. A. Yousefi, A. Rashidi, and F. Golestanifard, "A flexible piezoelectric pressure sensor based on PVDF nanocomposite fibers doped with PZT particles for energy harvesting applications," Ceramics International, vol. 46, pp. 19669-19681, 2020.
[14]        T. A. Khattab and M. S. Abdelrahman, "From smart materials to chromic textiles," Advances in functional finishing of textiles, pp. 257-274, 2020.
[15]        R. Christie, "Chromic materials for technical textile applications," in Advances in the dyeing and finishing of technical textiles, ed: Elsevier, 2013, pp. 3-36.
[16]        M. Viková, "Type of chromic materials," in Chromic Materials, ed: Apple Academic Press, 2018, pp. 53-126.
[17]        Y. Yang, M. Li, and S. Fu, "Screen-printed photochromic textiles with high fastness prepared by self-adhesive polymer latex particles," Progress in Organic Coatings, vol. 158, p. 106348, 2021.
[18]        J. Zhang, Q. Zou, and H. Tian, "Photochromic materials: more than meets the eye," Advanced Materials, vol. 25, pp. 378-399, 2013.
[19]        A. P. Periyasamy, M. Vikova, and M. Vik, "A review of photochromism in textiles and its measurement," Textile Progress, vol. 49, pp. 53-136, 2017.
[20]        T. Cheng, T. Lin, J. Fang, and R. Brady, "Photochromic wool fabrics from a hybrid silica coating," Textile Research Journal, vol. 77, pp. 923-928, 2007.
[21]        Z. He, B. Bao, J. Fan, W. Wang, and D. Yu, "Photochromic cotton fabric based on microcapsule technology with anti-fouling properties," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 594, p. 124661, 2020.
[22]        E. Refaat, M. Mohamed, A. Youssif, S. Ali, A. Fathallah, D. Maamoun, et al., "Uv protection and water repellent finishing of polyester fabric printed with photochromic dyes," Journal of Textiles, Coloration and Polymer Science, 2023.
[23]        A. Hakami, S. S. Srinivasan, P. K. Biswas, A. Krishnegowda, S. L. Wallen, and E. K. Stefanakos, "Review on thermochromic materials: development, characterization, and applications," Journal of Coatings Technology and Research, vol. 19, pp. 377-402, 2022.
[24]        X. Ji, W. Liu, Y. Yin, C. Wang, and F. Torrisi, "A graphene-based electro-thermochromic textile display," Journal of Materials Chemistry C, vol. 8, pp. 15788-15794, 2020.
[25]        S. Khamseh and M. Sadeghi Kiakhani, "Application of Emerging Technologies using for Fabrication of Smart Surfaces on Textiles," Journal of Textile Science and Technology, vol. 7, pp. 29-38, 2018.
[26]        A. Dybko, W. Wroblewski, E. Roźniecka, J. Maciejewski, and Z. Brzozka, "Comparison of two thermochromic solutions for fibre optic temperature probes," Sensors and Actuators A: Physical, vol. 76, pp. 203-207, 1999.
[27]        I. S. Lopez, A. L. Mendonça, M. Fernandes, V. de Zea Bermudez, J. Morgado, G. Del Pozo, et al., "Europium complex-based thermochromic sensor for integration in plastic optical fibres," Optical Materials, vol. 34, pp. 1447-1450, 2012.
[28]        C. Fernández-Valdivielso, I. Matıas, and F. Arregui, "Simultaneous measurement of strain and temperature using a fiber Bragg grating and a thermochromic material," Sensors and Actuators A: Physical, vol. 101, pp. 107-116, 2002.
[29]        D. Xue and T. Zhao, "The electrothermal color-changing fabric based on high-sensitivity thermochromic microcapsules," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 678, p. 132458, 2023.
[30]        C. Calvino, L. Neumann, C. Weder, and S. Schrettl, "Approaches to polymeric mechanochromic materials," Journal of Polymer Science Part A: Polymer Chemistry, vol. 55, pp. 640-652, 2017.
[31]        Z. Wang and R. Liu, "PEDOT: PSS-based electrochromic materials for flexible and stretchable devices," Materials Today Electronics, vol. 4, p. 100036, 2023.
[32]        M. Gicevicius, I. A. Cechanaviciute, and A. Ramanavicius, "Electrochromic textile composites based on polyaniline-coated metallized conductive fabrics," Journal of the electrochemical society, vol. 167, p. 155515, 2020.
[33]        P. Yang, P. Sun, and W. Mai, "Electrochromic energy storage devices," Materials today, vol. 19, pp. 394-402, 2016.
[34]        S. Sinha, R. Daniels, O. Yassin, M. Baczkowski, M. Tefferi, A. Deshmukh, et al., "Electrochromic fabric displays from a robust, open‐air fabrication technique," Advanced Materials Technologies, vol. 7, p. 2100548, 2022.
[35]        S. Raoux, "Phase change materials," Annual Review of Materials Research, vol. 39, pp. 25-48, 2009.
[36]        S. Raoux, F. Xiong, M. Wuttig, and E. Pop, "Phase change materials and phase change memory," MRS bulletin, vol. 39, pp. 703-710, 2014.
[37]        X. Tao, Smart fibres, fabrics and clothing: fundamentals and applications: Elsevier, 2001.
[38]        S. Mondal, "Phase change materials for smart textiles–An overview," Applied thermal engineering, vol. 28, pp. 1536-1550, 2008.
[39]        F. Salaün, "Phase change materials for textile application," Textile Industry and Environment, pp. 1-27, 2019.
[40]        A. Berendjchi, R. Khajavi, A. A. Yousefi, and M. E. Yazdanshenas, "Surface characteristics of coated polyester fabric with reduced graphene oxide and polypyrrole," Applied Surface Science, vol. 367, pp. 36-42, 2016.
[41]        I.-A. Pavel, S. Lakard, and B. Lakard, "Flexible sensors based on conductive polymers," Chemosensors, vol. 10, p. 97, 2022.
[42]        C. Cochrane, V. Koncar, M. Lewandowski, and C. Dufour, "Design and development of a flexible strain sensor for textile structures based on a conductive polymer composite," Sensors, vol. 7, pp. 473-492, 2007.
[43]        S. Golabzaei, R. Khajavi, H. A. Shayanfar, M. E. Yazdanshenas, and N. Talebi, "Fabrication and characterization of a flexible capacitive sensor on PET fabric," International Journal of Clothing Science and Technology, vol. 30, pp. 687-697, 2018.
[44]        E. Hakansson, A. Kaynak, T. Lin, S. Nahavandi, T. Jones, and E. Hu, "Characterization of conducting polymer coated synthetic fabrics for heat generation," Synthetic Metals, vol. 144, pp. 21-28, 2004.
[45]        J. Wu, D. Zhou, C. O. Too, and G. G. Wallace, "Conducting polymer coated lycra," Synthetic Metals, vol. 155, pp. 698-701, 2005.
[46]        M. Addington, "Smart Materials and Sustainability," Austin: Center for Sustainable Development-The University of Texas at Austin, 2010.
[47]        J. Uchida, B. Soberats, M. Gupta, and T. Kato, "Advanced functional liquid crystals," Advanced Materials, vol. 34, p. 2109063, 2022.
[48]        B. Bahadur, Liquid Crystal-Applications And Uses (Volume 1) vol. 1: World scientific, 1990.
[49]        S. Mathews, G. Farrell, and Y. Semenova, "All-fiber polarimetric electric field sensing using liquid crystal infiltrated photonic crystal fibers," Sensors and Actuators A: Physical, vol. 167, pp. 54-59, 2011.
[50]        M. K. Singh, "Flexible photovoltaic textiles for smart applications," Sol. Cells New Asp. Solut, pp. 43-68, 2011.
[51]        F. Ye, S. Dong, Z. Tian, S. Yao, Z. Zhou, and S. Wang, "Fabrication of the PLA/Sr2MgSi2O7: Eu2+, Dy3+ long-persistent luminescence composite fibers by electrospinning," Optical Materials, vol. 36, pp. 463-466, 2013.
[52]        F. Ye, S. Dong, Z. Tian, S. Yao, Z. Zhou, and S. Wang, "Fabrication and characterization of long-persistent luminescence/polymer (Ca2MgSi2O7: Eu2+, Dy3+/PLA) composite fibers by electrospinning," Optical Materials, vol. 45, pp. 64-68, 2015.
[53]        N. Santos, A. Fernandes, L. Alves, N. Sobolev, E. Alves, K. Lorenz, et al., "Microprobe analysis, iono-and photo-luminescence of Mn2+ activated ZnGa2O4 fibres," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 306, pp. 195-200, 2013.
[54]        A. Kir’yanov, V. Minkovich, Y. O. Barmenkov, M. M. Gamez, and A. Martinez-Rios, "Multi-wavelength visible up-converted luminescence in novel heavily doped Ytterbium–Holmium silica fiber under low-power IR diode pumping," Journal of luminescence, vol. 111, pp. 1-8, 2005.
[55]        C. A. Kelly, C. Toncelli, J. P. Kerry, and D. B. Papkovsky, "Discrete O2 sensors produced by a spotting method on polyolefin fabric substrates," Sensors and Actuators B: Chemical, vol. 203, pp. 935-940, 2014.
[56]        A. M. C. Santos, M. Mohammadi, and S. Afshar, "Investigation of a fibre-coupled beryllium oxide (BeO) ceramic luminescence dosimetry system," Radiation measurements, vol. 70, pp. 52-58, 2014.
[57]        F. Klein, S. Greilich, C. E. Andersen, L. R. Lindvold, and O. Jäkel, "A thin layer fiber-coupled luminescence dosimeter based on Al2O3: C," Radiation measurements, vol. 46, pp. 1607-1609, 2011.
[58]        J. Dı́az-Garcı́a, J. M. Costa-Fernández, N. Bordel-Garcı́a, and A. Sanz-Medel, "Room-temperature phosphorescence fiber-optic instrumentation for simultaneous multiposition analysis of dissolved oxygen," Analytica chimica acta, vol. 429, pp. 55-64, 2001.
[59]        M. de Vos, R. Torah, S. Beeby, and J. Tudor, "Functional electronic screen-printing–electroluminescent lamps on fabric," Procedia Engineering, vol. 87, pp. 1513-1516, 2014.
[60]        L. I. Berger, Semiconductor materials: CRC press, 2020.
[61]        A. Chaves, J. G. Azadani, H. Alsalman, D. Da Costa, R. Frisenda, A. Chaves, et al., "Bandgap engineering of two-dimensional semiconductor materials," npj 2D Materials and Applications, vol. 4, p. 29, 2020.
[62]        Z. Mao, W. Wang, Y. Liu, L. Zhang, H. Xu, and Y. Zhong, "Infrared stealth property based on semiconductor (M)-to-metallic (R) phase transition characteristics of W-doped VO2 thin films coated on cotton fabrics," Thin solid films, vol. 558, pp. 208-214, 2014.
[63]        X. Huang, D. Ji, H. Fuchs, W. Hu, and T. Li, "Recent progress in organic phototransistors: Semiconductor materials, device structures and optoelectronic applications," ChemPhotoChem, vol. 4, pp. 9-38, 2020.
[64]        D. K. Schroder, Semiconductor material and device characterization: John Wiley & Sons, 2015.
[65]        M. P. Paranthaman, W. Wong-Ng, and R. N. Bhattacharya, Semiconductor materials for solar photovoltaic cells vol. 218: Springer, 2016.
[66]        A. Ehrmann and T. Blachowicz, "Recent coating materials for textile-based solar cells," AIMS Materials Science, vol. 6, 2019.
[67]        W. Kylberg, F. A. De Castro, P. Chabrecek, U. Sonderegger, B. T. T. Chu, F. Nüesch, et al., "Woven electrodes for flexible organic photovoltaic cells," Advanced Materials, vol. 23, pp. 1015-1019, 2011.
[68]        R. González and N. J. Pinto, "Electrospun poly (3-hexylthiophene-2, 5-diyl) fiber field effect transistor," Synthetic Metals, vol. 151, pp. 275-278, 2005.
[69]        H. Castro, E. Sowade, J. Rocha, P. Alpuim, A. Machado, R. Baumann, et al., "Degradation of all-inkjet-printed organic thin-film transistors with TIPS-pentacene under processes applied in textile manufacturing," Organic Electronics, vol. 22, pp. 12-19, 2015.
[70]        D. Wang, Y. Su, D. Chen, L. Wang, X. Xiang, and D. Zhu, "Preparation and characterization of poly (3-octylthiophene)/carbon fiber thermoelectric composite materials," Composites Part B: Engineering, vol. 69, pp. 467-471, 2015.
[71]        P. Dineva, D. Gross, R. Müller, T. Rangelov, P. Dineva, D. Gross, et al., Piezoelectric materials: Springer, 2014.
[72]        M. Abbasipour, R. Khajavi, and A. H. Akbarzadeh, "A comprehensive review on piezoelectric polymeric and ceramic nanogenerators," Advanced Engineering Materials, vol. 24, p. 2101312, 2022.
[73]        N. Chamankar, R. Khajavi, A. Yousefy, A. Rashidi, and F. Golestanifard, "PZT ELECTROSPUN NANOFIBERS FOR ENERGY HARVESTING STRATEGIES."
[74]        M. Habib, I. Lantgios, and K. Hornbostel, "A review of ceramic, polymer and composite piezoelectric materials," Journal of Physics D: Applied Physics, 2022.
[75]        N. Chamankar, R. Khajavi, A. A. Yousefi, A. s. Rashidi, and F. Golestanifard, "Comparing the piezo, pyro and dielectric properties of PZT particles synthesized by sol–gel and electrospinning methods," Journal of Materials Science: Materials in Electronics, vol. 30, pp. 8721-8735, 2019.
[76]        M. Abbasipour, R. Khajavi, A. A. Yousefi, M. E. Yazdanshenas, and F. Razaghian, "The piezoelectric response of electrospun PVDF nanofibers with graphene oxide, graphene, and halloysite nanofillers: a comparative study," Journal of Materials Science: Materials in Electronics, vol. 28, pp. 15942-15952, 2017.
[77]        R. Khajavi and M. Abbasipour, "Piezoelectric PVDF polymeric films and fibers: polymorphisms, measurements, and applications," Industrial applications for intelligent polymers and coatings, pp. 313-336, 2016.
[78]        M. C. Sekhar, E. Veena, N. S. Kumar, K. C. B. Naidu, A. Mallikarjuna, and D. B. Basha, "A review on piezoelectric materials and their applications," Crystal Research and Technology, vol. 58, p. 2200130, 2023.
[79]        M. Abbasipour, R. Khajavi, A. A. Yousefi, M. E. Yazdanshenas, F. Razaghian, and A. Akbarzadeh, "Improving piezoelectric and pyroelectric properties of electrospun PVDF nanofibers using nanofillers for energy harvesting application," Polymers for Advanced Technologies, vol. 30, pp. 279-291, 2019.
[80]        E. Nilsson, A. Lund, C. Jonasson, C. Johansson, and B. Hagström, "Poling and characterization of piezoelectric polymer fibers for use in textile sensors," Sensors and Actuators A: Physical, vol. 201, pp. 477-486, 2013.
[81]        E. Nilsson, L. Mateu, P. Spies, and B. Hagström, "Energy harvesting from piezoelectric textile fibers," Procedia Engineering, vol. 87, pp. 1569-1572, 2014.
[82]        H. P. Konka, M. Wahab, and K. Lian, "Piezoelectric fiber composite transducers for health monitoring in composite structures," Sensors and Actuators A: Physical, vol. 194, pp. 84-94, 2013.
[83]        A. Dolay, C. Courtois, S. d’Astorg, M. Rguiti, J.-L. Petitniot, and A. Leriche, "Fabrication and characterization of metal core piezoelectric fibres by dip coating process," Journal of the European Ceramic Society, vol. 34, pp. 2951-2957, 2014.
[84]        D. G. Dassanayaka, T. M. Alves, N. D. Wanasekara, I. G. Dharmasena, and J. Ventura, "Recent progresses in wearable triboelectric nanogenerators," Advanced Functional Materials, vol. 32, p. 2205438, 2022.
[85]        F. Karimdehnavi, A. Valipouri, and A. Karimian, "Evaluating the Triboelectric Performance of wearable Textiles in the conversion of Mechanical Energy to Electrical Energy," Journal of Textile Science and Technology, vol. 9, pp. 51-57, 2020.
[86]        M. Zhang, T. Gao, J. Wang, J. Liao, Y. Qiu, Q. Yang, et al., "A hybrid fibers based wearable fabric piezoelectric nanogenerator for energy harvesting application," Nano Energy, vol. 13, pp. 298-305, 2015.
[87]        C. Liu, W. Zhang, J. Sun, J. Wen, Q. Yang, H. Cuo, et al., "Piezoelectric nanogenerator based on a flexible carbon-fiber/ZnO–ZnSe bilayer structure wire," Applied surface science, vol. 322, pp. 95-100, 2014.
[88]        X. Ruan, A. Safari, and T.-W. Chou, "Effective elastic, piezoelectric and dielectric properties of braided fabric composites," Composites Part A: Applied Science and Manufacturing, vol. 30, pp. 1435-1444, 1999.
[89]        M. Kechiche, F. Bauer, O. Harzallah, and J.-Y. Drean, "Development of piezoelectric coaxial filament sensors P (VDF-TrFE)/copper for textile structure instrumentation," Sensors and Actuators A: Physical, vol. 204, pp. 122-130, 2013.
[90]        G. Bartkowiak, A. Dąbrowska, and A. Greszta, "Development of smart textile materials with shape memory alloys for application in protective clothing," Materials, vol. 13, p. 689, 2020.
[91]        C.-F. Chen, R.-T. Zheng, T.-T. Kung, C.-N. Shauo, and H.-J. Shy, "A strain-fiber actuator by use of shape memory alloy spring," Optik, vol. 120, pp. 818-823, 2009.
[92]        J. Raghavan, T. Bartkiewicz, S. Boyko, M. Kupriyanov, N. Rajapakse, and B. Yu, "Damping, tensile, and impact properties of superelastic shape memory alloy (SMA) fiber-reinforced polymer composites," Composites Part B: Engineering, vol. 41, pp. 214-222, 2010.
[93]        J. Leng, X. Lan, and S. Du, "Shape-memory polymer composites," Shape-Memory Polymers and Multifunctional Composites, p. 203, 2010.
[94]        G. Li and P. Zhang, "A self-healing particulate composite reinforced with strain hardened short shape memory polymer fibers," Polymer, vol. 54, pp. 5075-5086, 2013.
[95]        G. Li, O. Ajisafe, and H. Meng, "Effect of strain hardening of shape memory polymer fibers on healing efficiency of thermosetting polymer composites," Polymer, vol. 54, pp. 920-928, 2013.
[96]        S. Mondal, J. Hu, Z. Yang, Y. Liu, and Y.-s. Szeto, "Shape memory polyurethane for smart garment," Research Journal of Textile and Apparel, vol. 6, pp. 75-83, 2002.