مطالعه مروری اثر نانو الیاف کربن بر سینتیک پخت رزین های اپوکسی

نوع مقاله : مقاله مروری

نویسندگان

1 1- دانشجوی دکتری مهندسی پلیمر، گروه مهندسی پلیمر، دانشگاه آزاد اسلامی واحد تهران جنوب، صندوق پستی:466- 19585 2-مرکز تحقیقات نانو، دانشگاه

2 دانشیار، دانشکده مهندسی شیمی و پلیمر، دانشگاه آزاد اسلامی، واحد تهران جنوب، صندوق پستی:466- 19585 دانشیار، مرکز تحقیقات نانو، دانشگاه

3 عضو هیات علمی دانشکده فنی و مهندسی دانشگاه آزاد اسلامی تهران جنوب

4 دانشیار، گروه شیمی، دانشگاه آزاد اسلامی واحد شهر قدس ، صندوق پستی:374-37515

5 استادیار، گروه مهندسی پلیمر، دانشگاه آزاد اسلامی واحد تهران جنوب، صندوق پستی:466- 19585

چکیده

رزین های اپوکسی یکی از مهمترین پلیمرهای حرارتی است که به دلیل خواص فیزیکی، مکانیکی و مقاومت شیمیایی خوب در صنایع پوشش ها ، ساختمان، مواد کامپوزیت با کارایی بالا مورد استفاده قرار می گیرد. معادلات سینتیک پخت برای بهینه سازی رزین های اپوکسی و نانو کامپوزیت های اپوکسی استفاده می شود، و همچنین مطالعه سینتیک پخت می تواند کیفیت محصول نهایی را افزایش دهد. تغییرات در دمای انتقال شیشه ای می تواند بر درجه پخت رزین اپوکسی تاثیر گذار باشد. حضور نانو الیاف کربنی در رزین اپوکسی به بهبود و تسریع فرآیند شبکه ای شدن کمک می کند. جذب مولکول های عامل پخت به درون نانو الیاف کربن، غلظت موثر نانو الیاف کربن را کاهش می دهد. اصلاح سطح نانو الیاف کربنی انرژی اکتیواسیون را کاهش می دهد و باعث بهبود درسرعت واکنش پخت می شود. در این پژوهش به اثر اضافه کردن نانو الیاف کربن و نانو الیاف کربن اصلاح شده بر ریخت شناسی و خواص مکانیکی و رئولوژیکی ، مقدارانرژی فعالسازی، سرعت واکنش پخت، درجه پخت ،جریان گرمایی، و مدلسازی سینتیک پخت پرداخته می شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A review study of the effect of carbon nanofibers on the curing kinetics of epoxy resins

نویسندگان [English]

  • Mohammad Hossein Karami 1
  • MohammadReza Kalaee 2
  • Ramin Khajavi 3
  • Omid Moradi 4
  • Davood Zaarei 5
1 Department of Polymer Engineering, Faculty Of Engineering, South Tehran Branch, Islamic Azad University, P.O. Box 19585-466, Tehran, Iran
2 Department of Polymer Engineering, Islamic Azad University, South Tehran Branch, P.O. Box 19585-466, Tehran, Iran 2Nano Research Center, Islamic Azad University, South Tehran Branch
3 Faculty member of the Faculty of Engineering, Islamic Azad University of South Tehran
4 Department of Chemistry, Shahre-Qods Branch, Islamic Azad University, Shahre-Qods 37515-374.
5 Department of Polymer Engineering, Faculty Of Engineering, South Tehran Branch, Islamic Azad University, P.O. Box 19585-466, Tehran, Iran
چکیده [English]

Epoxy resins are one of the most important thermosetting polymers that applied in the industries of coatings, buildings, and high performance composite materials due to their physical , mechanical properties and good chemical resistance. Curing kinetics equations are used to optimized epoxy resins and epoxy nanocomposites and also, studying the kinetics of curing can increased the quality of the final product. Changes in the glass transition temperature can affected the conversion of the epoxy resin, and the presence of carbon nanofibers in the matrix helps to improved the crosslinking process. Adsorption of curing agent molecules into carbon nanofibers reduced the concentration of carbon nanofibers and also, surface modification of nanofibers reduced the activation energy and improved the curing rate. In this research, the effect of adding carbon nanofibers and modified carbon nanofibers on morphology and mechanical , rheological properties, activation energy, reaction rate, degree of curing, heat flow, and curing kinetics modeling has been investigated.

کلیدواژه‌ها [English]

  • "؛ Carbon nanofiber"؛ Epoxy Resin"؛
  • ، "؛ Curing Kinetics"؛ Modeling"؛ ، "؛ Modified Carbon nanofiber"
 1. Ahmadi Z., Epoxy in nanotechnology: A short review, Progress in Organic Coatings ,132, 445-448, 2019.
2. Ray SS., Okamoto M., Polymer/layered silicate nanocomposites: a review from preparation to processing, Progress in
Organic Coatings,28,1539-1641,2003.
3. Al-Saleh, M. H. & Sundararaj, U. Review of the mechanical
properties of carbon nanofiber/polymer composites. Compos. Part A Appl. Sci. Manuf. 42, 2126–2142 ,2011.
4. Iwahori, Y., Ishiwata, S., Sumizawa, T. & Ishikawa, T. Mechanical properties improvements in two-phase and threephase composites using carbon nano-fiber dispersed resin.
Compos. Part A Appl. Sci. Manuf. 36, 1430–1439 (2005)
5. Rosso P., Lin Ye., Epoxy/Silica Nanocomposites Nanoparticle-Induced Cure Kinetics and Microstructure, Macromolecular Rapid Communications, 28, 121-126,2007.
6. Kalaee M.R., Famili M.H.N, Mahdavi H.,Cure Kinetic of
Poly (alkyltetrasulfide) Using a Rheological,Polymer-Plastics Technology and Engineering, 48, 627-632, 2009
7. Jouyandeh M., Rahmati N., Movahedifard E., Hadavand
B.S., Karami Z., Ghaffari M., Taheri P., Bakhshandeh E.,
Vahabi H., Ganjali M.R., Formela K., Saeb M .R., Properties of nano-Fe3O4 incorporated epoxy coatings from Cure
Index perspective, Progress in Organic Coatings, 133, 220-
228,2019.
8. Jin.F.L , Li.X, and Park.S.J, Synthesis and application of
epoxy resins: A review, J Ind Eng Chem, 29, Pages 1-11,
2015.
9. De Schoenmaker, B., van der Heijden, S., Moorkens, S.,
Rahier, H., van Assche, G. & De Clerck, K. Effect of nanofibres on the curing characteristics of an epoxy matrix. Compos. Sci. Technol. 79, 35–41 (2013).
10. Shokrieh, M. M., Esmkhani, M., Vahedi, F. & Shahverdi,
H. R. Improvement of mechanical and electrical properties
of epoxy resin with carbon nanofibers. Iran. Polym. J. 22,
721–727 (2013).
11. Zhang, G., Karger-Kocsis, J. & Zou, J. Synergetic effect of
carbon nanofibers and short carbon fibers on the mechanical and fracture properties of epoxy resin. Carbon N. Y. 48,
4289–4300 (2010).
12. Nie, Y. & Hübert, T. Effect of carbon nanofiber (CNF) silanization on the properties of CNF/epoxy nanocomposites.
Polym. Int. 60, 1574–1580 (2011).
13. Montserrat S., Málek J., A kinetic analysis of the curing
reaction of an epoxy resin, Thermochimica Acta, 228, 47-
60,1993.
14. Málek J., A computer program for kinetic analysis of
  non-isothermal thermoanalytical data, Thermochimica
Acta,138, 337-346,1989
15. Vyazovkin S., Burnham A.K., Favergeon L., Koga N.,
Moukhina E., Luis A., Maqueda P., Sbirrazzuoli N., ICTAC
Kinetics Committee recommendations for analysis of multi-step kinetics, Thermochimica Acta, 689,178597, 2020.
16. Aussawasathien, D. & Sancaktar, E. Effect of non-woven
carbon nanofiber mat presence on cure kinetics of epoxy nanocomposites. Macromol. Symp. 264, 26–33 (2008).
17. Xie, H., Liu, B., Sun, Q., Yuan, Z., Shen, J. & Cheng, R.
Cure kinetic study of carbon nanofibers/epoxy composites
by isothermal DSC. J. Appl. Polym. Sci. 96, 329–335 (2005).
18. Prolongo, S. G., Gude, M. R., Sanchez, J. & Ureña, A. Nanoreinforced Epoxy Adhesives for Aerospace Industry. J. Adhes. 85, 180–199 (2009).
19. Siddiqui, N. A., Khan, S. U., Ma, P. C., Li, C. Y. & Kim, J.-
K. Manufacturing and characterization of carbon fibre/epoxy
composite prepregs containing carbon nanotubes. Compos.
Part A Appl. Sci. Manuf. 42, 1412–1420 (2011).
20. Cure kinetics of vapor grown carbon nanofiber (VGCNF)
modified epoxy resin.pdf.
21. Fu, Y. & Zhong, W. H. Cure kinetics behavior of a functionalized graphitic nanofiber modified epoxy resin. Thermochim. Acta 516, 58–63 (2011).
22. Cai, Z. Q., Movva, S., Chiou, N. R., Guerra, D., Hioe, Y.,
Castro, J. M. & Lee, L. J. Effect of polyaniline surface modification of carbon nanofibers on cure kinetics of epoxy resin.
J. Appl. Polym. Sci. 118, 2328–2335 (2010).
23. Movva, S., Ouyang, X., Castro, J. & Lee, L. J. Carbon nanofiber paper and its effect on cure kinetics of low temperature
epoxy resin. J. Appl. Polym. Sci. 125, 2223–2230 (2012).
24. Málek J., The kinetic analysis of non-isothermal data, Thermochimica Acta, 200, 257- 269,1992
25. Ahmadi z., Epoxy in Nanotechnology: A Short Review,
Prog. Org. Coat, 132, 445-448, 2019.
26. Zabihi o., Khayyam H., Fox B.L., and Naebe M., Enhanced
Thermal Stability and Lifetime Of Epoxy Nanocomposites
Using Covalently Functionalized Clay: Experimental And
Modelling, New J. Chem, 39, 2269-2278,2015.
27. Dzuhri S., Uhana N.Y., and Khairulazfar M., Thermal stability and decomposition study of epoxy/clay nanocomposites,
Sains Malays ,44, 441- 448 ,2015.
28. Singh S., Srivastava V.K., and Prakash R.R., Characterisation of Multi-walled Carbon Nanotube Reinforced Epoxy
Resin Composites, Mater. Sci. Technol, 29(9), 1130- 1134,
2013.
29. Chen H.O., Jacobs B., Wua W.G., Rudiger B., and Schadel
B., Effect of Dispersion Method On Tribological Properties
of Carbon Nanotube Reinforced Epoxy Resin Composites,
Polym. Test, 26, 351-360 ,2007.
30. Ton T., M T., Ngo T. D., Ding P., Fang G., Cole K. C and
etal., Epoxy Nanocomposites: Analysis and Kinetics of
Cure, Polym. Eng. Sci, 44, 1132-1141 ,2004.
31. Tezel G.B., Sarmah A., Desai S. A., Vashisth M., and Green
J., Kinetics of Carbon Nanotube-loaded Epoxy Curing:
Rheometry, Differential Scanning Calorimetry, And Radio
Frequency Heating, Carbon ,175, 1-10, 2021.
32. [32] Ngo T. D., That T., Hoa M.T., and Cole K. C., Curing
Kinetics and Mechanical Properties of Epoxy Nanocomposites Based On Different Organoclays, Polym. Eng. Sci,47,
649-661, 2007.
33. Jin F.L.,Li X., and Park S.J, Synthesis And Application Of
Epoxy Resins: A Review, J Ind Eng Chem, 29, 1-11, 2015.
34. Schlagenhau f. L., Kuo Y.Y., Bahk Y. K., Nüesch F., and
Wang J., Decomposition and Particle Release of a Carbon
Nanotube/epoxy Nanocomposite at Elevated Temperatures,
J. Nanoparticle Res. 17, 440, 2015.
35. Zhou Y. X., Wu P. X., Cheng Z. Y., Ingram J. and Jeelani, S.,
Improvement in Electrical, Thermal and Mechanical Properties of Epoxy by Filling Carbon Nanotube., Express Polym.
Lett,2, 40-48 ,2008.
36. Kim J. A., Seong D. G., Kang T. J., and Youn J. R., Effects
Of Surface Modification On Rheological And Mechanical
Properties Of CNT/Epoxy Composites,Carbon N. Y., 44,
1898-1905 ,2006.
37. Málek J., A Computer Program for Kinetic Analysis of
Non-Isothermal Thermo analytical Data, Thermochim.Acta,
138, 337-346,1989.
38. Málek J., The Kinetic Analysis of Non-Isothermal Data.,
Thermochim.Acta, 200, 257-269, 1992.
39. Reso D., Cascaval C.N., Mustata F., and Ciobanu C., Cure
Kinetics, Epoxy Resins Studied by Nonisothermal DSC
Data, Thermochim. Acta, 383, 119-127, 2002.
40. Vyazovkin S., Burnham A.K., Favergeon L., Koga N.,
Moukhina E., Luis A., Maqueda P., and etal Ictac Kinetics
Committee Recommendations for Analysis Of Multi-step
Kinetics, Thermochim. Acta, 689,178597, 2020.
41. MaP. C., Kim J K., and TangB. Z.,Effects Of Silane Func
  tionalization on The Properties Of Carbon Nanotube/epoxy
Nanocomposites, Compos. Sci. Technol, 67, 2965-2972
,2007.
42. Špitalský Z., Matějka L., Šlouf M., Konyushenko E. N.,
Kovářová J., Zemek J.,and Kotek, J., Modification of Carbon Nanotubes And Its Effect On Properties Of Carbon Nanotube/epoxy Nanocomposites , Polym. Compos, 30, 1378-
1387 ,2009.
43. Ventura I. A., Rahaman A., and Lubineau G., The Thermal
Properties of a Carbon Nanotube-enriched Epoxy: Thermal
Conductivity, Curing, And Degradation Kinetics., J. Appl.
Polym. Sci.,130, 2722–2733, 2013.
44. Li C., Kang N. J., Labrandero S. D., Wan J., González C.,
and Wang D. Y. Synergistic Effect Of Carbon Nanotube and
Polyethersulfone on Flame Retardancy of Carbon Fiber Reinforced Epoxy Composites.,Ind. Eng. Chem. Res, 53, 1040-
1047 ,2014.
45. Xue Y., Shen M., Zeng S., Zhang W., Hao L., Yang L.,and
Song, P., " A Novel Strategy For Enhancing The Flame Resistance, Dynamic Mechanical And The Thermal Degradation Properties Of Epoxy Nanocomposites., Mater. Res. Express, 6, 125003 , 2019.
46. PugliaD., Valentini L., and KennyJ. M., Analysis of The
Cure Reaction of Carbon Nanotubes/epoxy Resin Composites Through Thermal Analysis and Raman Spectroscopy., J.
Appl. Polymer. Sci., 88, 452-458 ,2003.
47. Zheng X., Li D., Feng C., and Chen X., Thermal Properties
and Non-Isothermal Curing Kinetics Of Carbon Nanotubes/
ionic Liquid/epoxy Resin Systems., Thermochim. Acta, 618,
18–25 ,2015.
48. Aradhana R., Mohanty S., and Nayak S. K., High Performance Epoxy Nanocomposite Adhesive: Effect of Nanofillers On Adhesive Strength, Curing and Degradation Kinetics., Int. J. Adhes. Adhes., 84, 238-249 ,2018.
49. Cividanes L. S., Simonetti E. A., Campos T. M., Bettoni T.
S., Brunelli D. D., and Thim G. P., Anomalous Behavior of
Thermal Stability of Amino-carbon Nanotube–epoxy Nanocomposite., Journal of Composite Materials, 49(24), 3067–
3073,2015.
50. Wang Y. T., Wang C. S., Yin H. Y., Wang L. L., Xie H. F.,
and Cheng R. S., Carboxyl-terminated Butadiene-acrylonitrile-toughened Epoxy/carboxyl-modified Carbon Nanotube
Nanocomposites: Thermal and Mechanical Properties., Express Polym. Lett., 6, 719-728 ,2012.
51. Starink M.J., The Determination of Activation Energy from
Linear Heating Rate Experiments: A Comparison Of The
Accuracy Of Isoconversion Methods, Thermochim. Acta.,
404, 163-176, 2003
52. Karami M.H., Kalaee M.R., Mazinani S., Martínez V.G.,
Wellen R.M.R., Shanmugharaj A.M., and etal., Isoconversional Model Approach and Cure Kinetics of Epoxy/ NBR
Nanocomposites, Proceeding of the 14th International Seminar on Polymer Science and Technology (ISPST 2020), Tarbiat Modares University, 9-12 November, 9-10, 2020.
53. Karami M.H., and Kalaee M.R., Curing of Epoxy/UFNBRP
Nano Composites Using Calorimetric Method, Proceeding
of the 11th International Chemical Engineering Congress
& Exhibition (IChEC 2020), Tehran University, 15-17
April,15-17, 2020.
54. Karami M.H., Kalaee M.R.,and Mazinani S., Chemorheology Of Nano Acrylonitrile Butadiene Rubber (n-NBR)/Epoxy
Nanocomposites, Proceeding of the 1st International Conference on Rheology (ICOR), Iran Polymer And Petrochemical
Institute, 17-18 December ,104-105,2019.
55. Karami M.H., and Kalaee M.R., Modeling of Curing Kinetics of Epoxy Nanocomposites by Time Sweep Method,
Proceeding of the National Conference on Advanced Technologies in Energy, Water and Environment, Sharif Energy
Research Institute, 3March, 234-241, 2019.
56. Karami M.H., and Kalaee M.R., Chemorheology of Epoxy
Nanocomposites in The Presence of Elastomeric Nanoparticles, Proceeding of the National Conference on Advanced
Technologies in Energy, Water and Environment, Sharif Energy Research Institute, 3March, 209-216, 2019
57. Karami M.H. and Kalaee M.R., A Review of the Applications of Cross-linked Elastomeric Nanoparticles., Iran Rubber Mag, 25, 37-56, 2021.
58. Karami M.H., and Kalaee M.R., A review of the curing kinetics of epoxy nanocomposites/nano clay, Iran Polymer
Technology, Research and Development,6,29-38, 2021.
59. Karami M.H. and Kalaee M.R., Review of degradation
kinetics of epoxy nanocomposites in the presence of clay
nanoparticles, Polymerization, 2021, DOI: 10.22063/
BASPARESH.2021.2895.1552.
60. Karami M.H. and Kalaee M.R., Review of curing kinetics of epoxy nanocomposites in the presence of iron oxide nanoparticles, Polymerization, 2021, Doi:10.22063/
BASPARESH.2021.2824.1537.
  61. Karami M.H. and Kalaee M.R., Investigation of the effect of
carbon nanotubes on modeling of curing kinetics of epoxy
resin., Journal of science and engineering elites, 6,162-
175,2021
62. Karami,M. H., Kalaee,M.R., Khajavi.R., Moradi.O., and
Zaarei.D., Viscosity Modeling of epoxy Nanocomposites /
Elastomeric Nanoparticles , Proceeding of the 17th National Chemical Engineering Congress & Exhibition (IChEC
2021), FerdowsiUniversity of Mashhad, 9-11November ,
2021.
63. Karami,M. H., Kalaee,M.R., Khajavi.R., Moradi.O., and
Zaarei.D., Thermal Stability and Thermal Degradation of
Epoxy Nanocomposite in The Presence of Full Vulcanized
Elastomeric Nano particles, , Advanced materials& Novel
Coatings,10,2758-2770,2021.
64. Karami,M. H., Kalaee,M.R., Khajavi.R., Moradi.O., and
Zaarei.D. , Effect of Vulcanized Elastomeric Nanoparticles
on Thermal Stability and The Maximum Decomposition
Temperatures of Epoxy Resin,Proceeding of the 17th National Chemical Engineering Congress & Exhibition (IChEC
2021), FerdowsiUniversity of Mashhad, 9-11November ,
2021.
65. Karami M.H. and Kalaee M.R., Study of thermal degradation
kinetics of epoxy composite / carbon nanotubes, Polymerization, 2021, DOI: 10.22063/BASPARESH.2021.3017.1591
66. Hoseinpour, A., Production of nanocomposite film based on
epoxy resin. Journal of Textile Science and Technology, 9(3),
45-50,2020.
67. Gholshan T. H., Mirjalili, M., Valipour, P., Investigation of
thermal, mechanical and electrical properties of modified
carbon nanotubes reinforced epoxy composites. Journal of
Textile Science and Technology, 8(1), 5-11,2019.
68. Dastan, T., Ahmadi, M. Residual flexural strength and modulus after low-velocity impact in hybrid jute - polyester /
epoxy composites. Journal of Textile Science and Technology, 5(3), 45-50,2015.