جذب رنگزای راکتیو قرمز 198 بر روی نانو ساختار مغناطیسی سیلیکاتی: مطالعات جذب و مدل سازی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی نساجی، پوشاک و مد، دانشگاه آزاد اسلامی واحد قائم‌شهر، قائم شهر، ایران

چکیده

در این مطالعه، نانو ساختار سیلیکاتی میان حفره تهیه و سپس مغناطیسی شد(Magnetic-SBA-15) و توانایی آن در حذف رنگزای راکتیو قرمز 198 (RR198) از محلول آبی مورد بررسی قرار گرفت. ساختار جاذب تولید شده با پراش اشعه ایکس (XRD) و طیف سنجی فرو سرخ تبدیل فوریه (FTIR) مورد بررسی قرار گرفت. برای ارزیابی تأثیر پارامترهای مؤثر در فرآیند جذب مانند pH، میزان جاذب ، زمان تماس، دما و غلظت رنگزا بررسی و بهینه سازی انجام شد. شرایط بهینه برای حذف رنگزای راکتیو قرمز 198: 2 pH=، میزان جاذب 4/0 گرم بر لیتر و زمان تماس 60 دقیقه ،دمای 25 درجه سانتیگراد در غلطت رنگزای 60 میلی گرم بر لیتر بود. برای تعیین مقدار رنگ باقیمانده در محلول از اسپکتروفتومتر UV-vis استفاده شد. برای تعیین نوع ایزوترم جذب، از معادلات ایزوترم جذب لانگمیر، فرندلیش، تمکین، ردلیش-پیترسون و دوبینین-رادوشکویچ استفاده شد. نتایج برازش مناسبی را برای ایزوترم جذب لانگمیر ( 997/0 R2 = و275/0 RL =) نشان داد. با توجه به مقادیر بدست آمده از پارامترهای ترمودینامیکی مانند آنتالپی (346/15- کیلوژول بر مول) و انرژی آزاد گیبس، حذف رنگزای راکتیو قرمز 198 توسط Magnetic-SBA-15 گرمازا و خود به خود بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Adsorption of Reactive Red 198 on Silicate Magnetic Nano Structure: Adsorption Studies and Modeling

نویسندگان [English]

  • Hosein Zaersabet
  • Peiman Valipour
  • Habib-Allah Tayebi
Department of Textile, Apparel and Fashion Engineering, Islamic Azad University Qaimshahr Branch, Qaimshahr, Iran
چکیده [English]

In this study, a mesoporous silica nanostructure was synthesized and magnetized (Magnetic-SBA-15) and then its ability to remove reactive red 198 dye (RR198) from aqueous solution was investigated. The structure of produced adsorbent were evaluated by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). the effect of effective parameters on the adsorption process such as pH, adsorbent dose, contact time, temperature and dye concentration were investigated and optimized. The optimum conditions for removal of reactive red 198 dye was pH =2, adsorbent dosage of 0. 4 g/l ,contact time of 60 minutes and temperature 25 ⁰C in 60 ppm of dye concentration. UV-vis spectrophotometer was used to determine the amount of residual dye in the solution. To determine the type of adsorption isotherm, the Langmuir, Freundlich and dubinin-radushkevich equations of adsorption isotherms were used. The results showed a good fit for the Langmuir adsorption isotherm (R2 = 0.997 and RL = 0.275). According to the values obtained from thermodynamic parameters such as enthalpy (-15.346 kJ/mol) and Gibbs free energy, the removal of reactive red 198 dye by Magnetic-SBA-15 was exothermic and spontaneous.

کلیدواژه‌ها [English]

  • Silicate Mesoporous Nano-Structure
  • SBA-15
  • Reactive Red 198 Dye
  • Adsorption
  • Magnetic
[1]. Kuo, C.-Y., C.-H. Wu, and J.-Y. Wu, Adsorption of direct dyes from aqueous solutions by carbon nanotubes: Determination of equilibrium, kinetics and thermodynamics parameters. Journal of colloid and interface science, 2008. 327(2): p. 308-315.
[2]. Wu, C.-H., Adsorption of reactive dye onto carbon nanotubes: equilibrium, kinetics and thermodynamics. Journal of hazardous materials, 2007. 144(1-2): p. 93-100.
[3]. Gong, J.-L., et al., Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. Journal of hazardous materials, 2009. 164(2-3): p. 1517-1522.
[4]. Zareyee, D., H. Tayebi, and S.H. Javadi, Preparation of polyaniline/activated carbon composite for removal of reactive red 198 from aqueous solution. Iranian Journal of Organic Chemistry, 2012. 4(1): p. 799-802.
[5]. Aghajani, K. and H.-A. Tayebi, Synthesis of SBA-15/PAni mesoporous composite for adsorption of reactive dye from aqueous media: RBF and MLP networks predicting models. Fibers and Polymers, 2017. 18: p. 465-475.
[6].Torabinejad, A., et al., Synthesize and characterization of Aminosilane functionalized MCM-41 for removal of anionic dye: Kinetic and thermodynamic study. International Journal of Nano Dimension, 2016. 7(4): p. 295-307.
[7]. Dutta, D., S.K. Roy, and A.K. Talukdar, Effective removal of Cr (VI) from aqueous solution by diamino-functionalised mesoporous MCM-48 and selective oxidation of cyclohexene and ethylbenzene over the Cr containing spent adsorbent. Journal of environmental chemical engineering, 2017. 5(5): p. 4707-4715.
[8]. Anbia, M. and S. Salehi, Removal of acid dyes from aqueous media by adsorption onto amino-functionalized nanoporous silica SBA-3. Dyes and Pigments, 2012. 94(1): p. 1-9.
[9]. Mirzaie, M., et al., Removal of anionic dye from aqueous media by adsorption onto SBA-15/polyamidoamine dendrimer hybrid: adsorption equilibrium and kinetics. Journal of Chemical & Engineering Data, 2017. 62(4): p. 1365-1376.
[10]. Aghajani, K. and H.-A. Tayebi, Adaptive neuro-fuzzy inference system analysis on adsorption studies of reactive red 198 from aqueous solution by SBA-15/CTAB composite. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017. 171: p. 439-448.
[11]. Huang, S., et al., Synthesis and characterization of magnetic Fe x O y@ SBA-15 composites with different morphologies for controlled drug release and targeting. The Journal of Physical Chemistry C, 2008. 112(18): p. 7130-7137.
[12]. Liu, Y., et al., Thermal-responsive ion-imprinted polymer based on magnetic mesoporous silica SBA-15 for selective removal of Sr (II) from aqueous solution. Colloid and Polymer Science, 2015. 293(1): p. 109-123.
[13]. Malik, R., et al., Nano gold supported on ordered mesoporous WO3/SBA-15 hybrid nanocomposite for oxidative decolorization of azo dye. Microporous and Mesoporous Materials, 2016. 225: p. 245-254.
[14]. Chaudhuri, H., S. Dash, and A. Sarkar, SBA-15 functionalised with high loading of amino or carboxylate groups as selective adsorbent for enhanced removal of toxic dyes from aqueous solution. New Journal of Chemistry, 2016. 40(4): p. 3622-3634.
[15]. Atashin, H. and R. Malakooti, Magnetic iron oxide nanoparticles embedded in SBA-15 silica wall as a green and recoverable catalyst for the oxidation of alcohols and sulfides. Journal of Saudi Chemical Society, 2017. 21: p. S17-S24.
[16]. Mirzaie, M., et al., Optimized removal of acid blue 62 from textile waste water by SBA-15/PAMAM dendrimer hybrid using response surface methodology. Journal of Polymers and the Environment, 2018.26: p. 1831-1843.
[17]. Jiang, L., F. Chai, and Q. Chen, Soft magnetic nanocomposite microgels by in-situ crosslinking of poly acrylic acid onto superparamagnetic magnetite nanoparticles and their applications for the removal of Pb (II) ion. European Polymer Journal, 2017. 89: p. 468-481.
[18]. Shafiabadi, M., A. Dashti, and H.-A. Tayebi, Removal of Hg (II) from aqueous solution using polypyrrole/SBA-15 nanocomposite: Experimental and modeling. Synthetic Metals, 2016. 212: p. 154-160.
[19]. Tayebi, H.-A., et al., Synthesis of polyaniline/Fe3O4 magnetic nanoparticles for removal of reactive red 198 from textile waste water: kinetic, isotherm, and thermodynamic studies. Desalination and Water Treatment, 2016. 57(47): p. 22551-22563.
[20]. Deniz, F., Adsorption properties of low-cost biomaterial derived from Prunus amygdalus L. for dye removal from water. The Scientific World Journal, 2013. 2013.
[21]. Ho, Y., C. Huang, and H. Huang, Equilibrium sorption isotherm for metal ions on tree fern. Process Biochemistry, 2002. 37(12): p. 1421-1430.
[22]. Özacar, M. and İ.A. Şengil, Equilibrium data and process design for adsorption of disperse dyes onto alunite. Environmental Geology, 2004. 45(6): p. 762-768.
[23]. Mckay, G., M. El Geundi, and M. Nassar, Equilibrium studies during the removal of dyestuffs from aqueous solutions using bagasse pith. Water research, 1987. 21(12): p. 1513-1520.
[24]. Özcan, A., E.M. Öncü, and A.S. Özcan, Kinetics, isotherm and thermodynamic studies of adsorption of Acid Blue 193 from aqueous solutions onto natural sepiolite. Colloids and surfaces A: Physicochemical and engineering aspects, 2006. 277(1-3): p. 90-97.
[25]. Akazdam, S., et al., Decolourization of cationic and anionic dyes from aqueous solution by adsorption on NaOH treated eggshells: batch and fixed bed column study using response surface methodology. Journal of Materials and Environmental Sciences, 2017. 8(3): p. 784-800.
[26]. Javadian, H., et al., Study of the adsorption of Cd (II) from aqueous solution using zeolite-based geopolymer, synthesized from coal fly ash; kinetic, isotherm and thermodynamic studies. Arabian Journal of Chemistry, 2015. 8(6): p. 837-849.
[27]. Suflet, D.M., I. Popescu, and I.M. Pelin, Preparation and adsorption studies of phosphorylated cellulose microspheres. Cellul. Chem. Technol, 2017. 51: p. 23-34.
[28]. Ghanei, M., et al., Removal of acid blue 25 from aqueous media by magnetic-SBA-15/CPAA super adsorbent: adsorption isotherm, kinetic, and thermodynamic studies. Journal of Chemical & Engineering Data, 2018. 63(9): p. 3592-3605.
[29]. Welham, A., The theory of dyeing (and the secret of life). 2000.
[30]. Porter, J.J., Understanding the Sorption of Direct Dyes on Cellulose Substrates. AATCC review, 2003.
[31]. Porter, J.J., Dyeing equilibria: interaction of direct dyes with cellulose substrates. Coloration Technology, 2002. 118(5): p. 238-243.
[32]. Cegarra, J., P. Puente, and J. Valldeperas, The dyeing of textile materials: The scientific bases and the techniques of application. 1992: Textilia.
[33]. Maneesuwan, H., et al., Synthesis and characterization of Fe-Ce-MCM-48 from silatrane precursor via sol–gel process. Materials Letters, 2013. 94: p. 65-68.
[34]. Foo, K.Y. and B.H. Hameed, Insights into the modeling of adsorption isotherm systems. Chemical engineering journal, 2010. 156(1): p. 2-10.
[35]. Ayawei, N., A.N. Ebelegi, and D. Wankasi, Modelling and interpretation of adsorption isotherms. Journal of chemistry, 2017. 2017.
[36]. Akbartabar, I., et al., Physical chemistry studies of acid dye removal from aqueous media by mesoporous nano composite: adsorption isotherm, kinetic and thermodynamic studies. 2017.