مطالعه مشخصه های رنگی و خواص ریزساختاری پارچه پلی اتیلن ترفتالات پس از آمایش سطحی پرتو فرابنفش/گاز اُزُن

نوع مقاله : مقاله پژوهشی

نویسنده

دانشگاه صنعتی اصفهان،دانشکده نساجی

چکیده

امروزه توجه به فناوری پاک برای کاهش آلایندگی فرایندهای تکمیل در صنعت نساجی رو به افزایش است. آمایش سطحی پرتو فرابنفش/گاز اُزُن، فناوری سازگار با محیط زیست برای اصلاح خواص سطح الیاف و منسوجات می باشد. در این پژوهش ، ساز و کار عملکرد آمایش سطحی پرتو فرابنفش/گاز اُزُن بر پارچه 100% پلی اتیلن ترفتالات (دارای ساختار تافته) از جنبه های گوناگون (شیمیایی و فیزیکی) بررسی شده است. همچنین اندیس سفیدی وزردی ، ته رنگ و توزیع نمونه ها در فضارنگ CIELAB، به منظور بررسی مشخصه های رنگی پارچه ها ارزیابی شد. نتایج بررسی ها نشان می دهند که شکل گیری گروه های شیمیایی جدید بر سطح (به دلیل فعل و انفعالات نورشیمیایی) و ایجاد ناهمواری ‌های سطحی (به‌دلیل پدیده کَندگی فیزیکی)، دو عامل کلیدی در آمایش سطح پارچه پلی اتیلن ترفتالات پس از تابش پرتو فرابنفش/گاز اُزُن می باشند. همچنین مطالعه مشخصه های رنگی نشان می دهد که پس از آمایش سطحی پرتو فرابنفش/گاز اُزُن نیز پارچه پلی اتیلن ترفتالات سفید محسوب می شود و تغییری در توزیع نمونه ها در دیاگرام a*b* رخ نداده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study on the Colorimetric Characteristics and Microstructural Properties of Poly(ethylene terephthalate) Fabrics after the Surface Modification with Ultraviolet Irradiation/Ozone Gas

نویسنده [English]

  • Farnaz-sadat Fattahi
textile engineering department,,isfahan university of technology
چکیده [English]

Today, attention is paid to clean technology to reduce pollution of finishing processes in the textile industry.Surface treatment with ultraviolet/ozone gas is an environmentally friendly technology to improve the surface properties of fibers and textiles. In this research, the performance mechanism of Ultraviolet /ozone gas surface preparation on 100% polyethylene terephthalate fabric (with pique structure) has been investigated from various aspects (chemical and physical). Also, the whiteness index, yellowness index, tint and distribution of samples in CIELAB space were evaluated for estimating the colorimetric characteristics of fabrics. The results show that the formation of free radicals on the surface (due to the photochemical interactions) and surface roughening (due to the effect of physical etching) are two key factors in the surface modification of polyethylene terephthalate fabric after Ultraviolet/ozone gas irradiation. Also, study of colorimetric characteristics shows that after surface treatment with Ultraviolet/ozone gas, the polyethylene terephthalate fabric is still white and there is no change in the distribution of samples in the a*b *diagram.v

کلیدواژه‌ها [English]

  • Surface modification
  • Ultraviolet Irradiation/Ozone Gas
  • Poly(ethylene terephthalate) fabric
  • CIE whiteness index
  • Physical etching
[1] Athulya Wickramasingha, Y, Dharmasiri, B, Randall, JD, Yin, Y, Andersson, GG, Nepal, D, Surface modification of carbon fiber as a protective strategy against thermal degradation. Composites Part A: Applied Science and Manufacturing 2022;153:106740.
[2] Pornwannachai W, Horrocks AR, Kandola BK. Surface Modification of Commingled Flax/PP and Flax/PLA Fibres by Silane or Atmospheric Argon Plasma Exposure to Improve Fibre–Matrix Adhesion in Composites. Fibers 2022;10.
[3] Putra AEE, Renreng I, Arsyad H, Bakri B. Investigating the effects of liquid-plasma treatment on tensile strength of coir fibers and interfacial fiber-matrix adhesion of composites. Composites Part B: Engineering 2020;183:107722.
[4] Li Y, Ross AE. Plasma-treated carbon-fiber microelectrodes for improved purine detection with fast-scan cyclic voltammetry. Analyst 2020;145:805-15.
]5[ غلامیان ه. بهبود چسبندگی پوشش‌های رنگی به چوب با استفاده از آمایش سطحی پلاسما. علوم و فناوری رنگ 2020;14:41-7
 [6] Ghafoor B, Schrekker HS, Morais J, Amico SC. Surface modification of carbon fiber with imidazolium ionic liquids. Composite Interfaces 2022:1-13.
]7[ حاجی اا. مروری بر اصلاح سطحی الیاف پشم به کمک فناوری پلاسما و اثر آن بر خواص رنگرزی این لیف. علوم و فناوری نساجی و پوشاک 2015;5:35-43
[8] Le-The H, Tiggelaar RM, Berenschot E, van den Berg A, Tas N, Eijkel JCT. Postdeposition UV-Ozone Treatment: An Enabling Technique to Enhance the Direct Adhesion of Gold Thin Films to Oxidized Silicon. ACS Nano 2019;13:6782-9.
]9[ فتاحی ف، تحلیل کمّی طیف زیر قرمز تبدیل فوریه پلی لاکتیک اسید پس از تابش پرتو فرابنفش/گاز اُزُن. علوم و فناوری نساجی و پوشاک 2019;8:47-55
[10] Dawo, C, Afroz, MA, Iyer, PK, Chaturvedi, H. Effect of UV-ozone exposure on the dye-sensitized solar cells performance. Solar Energy 2020;208:212-9.
[11] Kohli, R. Chapter 9 - Applications of UV-Ozone Cleaning Technique for Removal of Surface Contaminants. In: Kohli R, Mittal KL, editors. Developments in Surface Contamination and Cleaning: Applications of Cleaning Techniques: Elsevier; 2019. p. 355-90
 
[12] Rosa, JM, Tambourgi, EB, Vanalle, RM, Carbajal, Gamarra FM, Curvelo Santana JC, Araújo MC. Application of continuous H2O2/UV advanced oxidative process as an option to reduce the consumption of inputs, costs and environmental impacts of textile effluents. Journal of Cleaner Production 2020;246:119012.
[13] Oluwabi AT, Gaspar D, Katerski A, Mere A, Krunks M, Pereira L, et al. Influence of Post-UV/Ozone Treatment of Ultrasonic-Sprayed Zirconium Oxide Dielectric Films for a Low-Temperature Oxide Thin Film Transistor. Materials (Basel) 2019;13:6.
[14] Quan D, Deegan B, Byrne L, Scarselli G, Ivanković A, Murphy N. Rapid surface activation of carbon fibre reinforced PEEK and PPS composites by high-power UV-irradiation for the adhesive joining of dissimilar materials. Composites Part A: Applied Science and Manufacturing 2020;137:105976.
[15] Yasuda K, Okazaki Y, Abe Y, Tsuga K. Effective UV/Ozone irradiation method for decontamination of hydroxyapatite surfaces. Heliyon 2017;3:e00372.
[16] Lu H-W, Kao P-C, Juang Y-D, Chu S-Y. The effects of ultraviolet-ozone-treated ultra-thin MnO-doped ZnO film as anode buffer layer on the electrical characteristics of organic light-emitting diodes. Journal of Applied Physics 2015;118:185501.
[17] Wang L, Gao S, Wang J, Wang W, Zhang L, Tian M. Surface modification of UHMWPE fibers by ozone treatment and UV grafting for adhesion improvement. The Journal of Adhesion 2018;94:30-45.
[18] Sadeghi-Kiakhani M, Safapour S, Sabzi F, Tehrani-Bagha AR. Effect of Ultra Violet (UV) Irradiation as an Environmentally Friendly Pre-Treatment on Dyeing Characteristic and Colorimetric Analysis of Wool. Fibers and Polymers 2020;21:179-87.
[19] Wen Y, Yuan Z, Qu J, Wang C, Wang A. Evaluation of Ultraviolet Light and Hydrogen Peroxide Enhanced Ozone Oxidation Treatment for the Production of Cellulose Nanofibrils. ACS Sustainable Chemistry & Engineering 2020;8:2688-97.
[20] Wang C, Yuan Z, Wang A, Qu J, Fang Z, Wen Y. Ultraviolet light enhanced sodium persulfate oxidation of cellulose to facilitate the preparation of cellulose nanofibers. Cellulose 2020;27:2041-51.
[21] Jang J, Jeong Y. Nano roughening of PET and PTT fabrics via continuous UV/O3 irradiation. Dyes and Pigments 2006;69:137-43.
[22] Rastogi S, Kandasubramanian B. Processing trends of silk fibers: Silk degumming, regeneration and physical functionalization. The Journal of The Textile Institute 2020:1-17.
[23] fattahi FK, A; Izadan, H. A Review on Poly(lactic acid) Fibre Fabrics Finishing Processes: Plasma Treatments, UV/Ozone Irradiation, Superhydrophobic surface Manufacturing, Enzymatic Treatment. Journal of Textile Science and Technology 2017;6:19-26.
[24] Rajendran Royan NR, Sulong AB, Yuhana NY, Chen RS, Ab Ghani MH, Ahmad S. UV/O3 treatment as a surface modification of rice husk towards preparation of novel biocomposites. PLoS One 2018;13:e0197345-e.
[25] Maqsood HS, Bashir U, Wiener J, Puchalski M, Sztajnowski S, Militky J. Ozone treatment of jute fibers. Cellulose 2017;24:1543-53.
[26] Froning JP, Lazar P, Pykal M, Li Q, Dong M, Zbořil R, et al. Direct mapping of chemical oxidation of individual graphene sheets through dynamic force measurements at the nanoscale. Nanoscale 2017;9:119-27.
[27] Choi S, Kim W, Shin W, Oh J, Jin S, Jung YM, et al. Effects of UV-ozone treatment on the electronic structures of F8BT and PFO polymeric thin films. Current Applied Physics 2020;20:1359-65.
[28] Gao M, Schoenfeld W, Zin NEDCLT-PALF, Yang B. UV-Ozone Oxide Treatment for Improved Surface Passivation.  OSA Advanced Photonics Congress (AP) 2020 (IPR, NP, NOMA, Networks, PVLED, PSC, SPPCom, SOF). Washington, DC: Optical Society of America; 2020. p. PvTu2G.5.
[29] Summerfelt ST. Ozonation and UV irradiation—an introduction and examples of current applications. Aquacultural Engineering 2003;28:21-36.
[30] Kim J, Kim J, Ahn B, Hassinen T, Jung Y, Ko S. Optimization and improvement of TIPS–pentacene transistors (OTFT) with UV–ozone and chemical treatments using an all-step solution process. Current Applied Physics 2015;15:1238-44.
[31] Santos ER, Moraes JIBd, Takahashi CM, Sonnenberg V, Burini EC, Yoshida S, et al. Low cost UV-Ozone reactor mounted for treatment of electrode anodes used in P-OLEDs devices. Polímeros 2016;26:236-41.
[32] Deng S-h, Lu H, Li DY. Influence of UV light irradiation on the corrosion behavior of electrodeposited Ni and Cu nanocrystalline foils. Scientific Reports 2020;10:3049.
[33] Shoueir K, Kandil S, El-hosainy H, El-Kemary M. Tailoring the surface reactivity of plasmonic Au@TiO2 photocatalyst bio-based chitosan fiber towards cleaner of harmful water pollutants under visible-light irradiation. Journal of Cleaner Production 2019;230:383-93.
[34] Jung K, Kim DH, Kim J, Ko S, Choi JW, Kim KC, et al. Influence of a UV-ozone treatment on amorphous SnO2 electron selective layers for highly efficient planar MAPbI3 perovskite solar cells. Journal of Materials Science & Technology 2020;59:195-202.
[35] Prasetyaningrum A, Widayat W, Jos B, Dharmawan Y, Ratnawati R. UV Irradiation and Ozone Treatment of κ-Carrageenan: Kinetics and Products Characteristics. 2020 2020:12.
[36] Nascimento RF, Silva AOd, Weber RP, Monteiro SN. Influence of UV radiation and moisten associated with natural weathering on the ballistic performance of aramid fabric armor. Journal of Materials Research and Technology 2020;9:10334-45.
[37] Kämäräinen T, Arcot LR, Johansson L-S, Campbell J, Tammelin T, Franssila S, et al. UV-ozone patterning of micro-nano fibrillated cellulose (MNFC) with alkylsilane self-assembled monolayers. Cellulose 2016;23:1847-57.
[38] Senatova SI, Senatov FS, Kuznetsov DV, Stepashkin AA, Issi JP. Effect of UV-radiation on structure and properties of PP nanocomposites. Journal of Alloys and Compounds 2017;707:304-9.
[39] Choi S, Kim W, Shin W, Oh J, Jin S, Jung YM, et al. Effects of UV-ozone treatment on the electronic structures of F8BT and PFO polymeric thin films. Current Applied Physics 2020;20:1359–65.
[40] Kato, Y, Jung M-C, Lee MV, Qi Y. Electrical and optical properties of transparent flexible electrodes: Effects of UV ozone and oxygen plasma treatments. Organic Electronics 2014;15:721-8.
[41] Wang, X, Li M, Feng G, Ge M. On the mechanism of conductivity enhancement in PEDOT:PSS/PVA Physics A 2020;126:184.
blend fiber induced by UV-light irradiation. Applied
[42] Park S-J, Park S-J. Effect of ozone-treated single-walled carbon nanotubes on interfacial properties and fracture toughness of carbon fiber-reinforced epoxy composites. Composites Part A: Applied Science and Manufacturing 2020;137:105937.
[43] Benli H, Bahtiyari Mİ. Combination of ozone and ultrasound in pretreatment of cotton fabrics prior to natural dyeing. Journal of Cleaner Production 2015;89:116-24.
[44] Sun, C, Zeng, R, Zhang, J, Qiu ZJ, Wu D. Effects of UV-Ozone Treatment on Sensing Behaviours of EGFETs with Al₂O₃ Sensing Film. Materials 2017;10.
[45] Mulyana Y, Uenuma M, Ishikawa Y, Uraoka Y. Reversible Oxidation of Graphene Through Ultraviolet/Ozone Treatment and Its Nonthermal Reduction through Ultraviolet Irradiation. The Journal of Physical Chemistry C 2014;118:27372-81.
]46[ فتاحی ف, موسوی شوشتری سا. مقدمه‌ای بر عمل‌آوری با تابش فرابنفش/ ازن و کاربرد آن در مهندسی سطح الیاف و فیلم‌های پلیمری. مطالعات در دنیای رنگ 2020;10:65-76
[47] Fattahi, FS. A Comparative Study on the Environmental Friendly Bleaching Processes of Poly(lactic acid) Substrate: Application of Ultraviolet/O3/H2O2 System. Progress in Color, Colorants and Coatings 2022;15:143-56.