مروری بر آزمون‌های تعیین میزان نشاسته در پلیمرهای زیست پایه تولیدی بر پایه نشاسته

نوع مقاله : مقاله مروری

نویسندگان

1 دانشکده مهندسی نساجی، دانشگاه صنعتی امیرکبیر

2 عضو هیات علمی/دانشکده مهندسی نساجی دانشگاه صنعتی امیرکبیر

چکیده

نشاسته یک ماده پر استفاده در تولید پلیمرهای سبز و زیست پایه است و ترکیب آن با پلیمرهای مصنوعی نظیر پلی اولفین‌ها، پلی لاکتیک اسید، پلی وینیل الکل باعث افزایش خواص مکانیکی آن‌ها می‌شود و در بسته‌بندی، صنعت نساجی، زمینه طبی و بهداشتی، رهایش دارو و ... کاربرد دارند و جایگزینی مناسب برای پلیمرهای مصنوعی هستند. یکی از آزمون‌های پایه که باید به شکل استاندارد انجام شود تا بتوان محصولات سبز تولیدی را براساس میزان نشاسته آن مورد طبقه بندی و راستی آزمایی قرار داد، آزمون اندازه‌گیری درصد نشاسته در محصولات زیست پایه تولید شده است. روش‌های شیمیایی و تحلیلی متفاوتی برای اندازه‌گیری میزان نشاسته در پلیمرهای زیست پایه توسط محققان ارائه شده از جمله روش فنل سولفوریک اسید، آنالیز گرماسنجی، آزمون رنگ سنجی، طیف سنجی مادون قرمز و استانداردهای ارائه شده مانند استاندارد ملی ایران به شماره 14000 که در این پژوهش مورد مطالعه و بررسی قرار گرفته و در نهایت نتایج برخی از این محققین در استفاده از این روش‌ها بر روی آمیخته‌های مختلف پلیمری و نشاسته گزارش شده است. به نظر می‌رسد از این روش‌های ذکر شده روش طیف سنجی مادون قرمز روشی آسانتر برای این ارزیابی است اما دقت کمتری دارد. آنالیز گرماسنجی روشی سریع برای انجام این تست است که خطای کمتری نسبت به روش FTIR دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Starch content evaluation tests of the starch-based polymers; a review

نویسندگان [English]

  • Faezeh Rezaei Bagha 1
  • Mohammad Ali Tavanaie 2
1 Textile Engineering Department, Amirkabir University of Technology
2 Associate Professor
چکیده [English]

Starch is a widely used material in the production of green and bio-based polymers. Compounding of starch with synthetic polymers such as polyolefins, polyesters, and polyvinyl alcohol increases their biodegradability. The application of these compounds is in disposable food packaging, textile, medical and health industries, etc. Starch content determining of the starch compounds is one of the important evaluations that should be done with a different standard or analytical ways, to be classified and verified such products. Differents chemical and analytical methods proposed to measure the amount of starch in the starch compounds like phenol sulfuric acid method, calorimetric test, Fourie transform infrared spectroscopy, and an Iranian national standard No. 14000, which it was considered in this research. From the researchers’ results, it can be concluded that the Fourier transform infrared spectroscopy is the simplest method for this evaluation with moderate accuracy. However, the calorimetric method is the faster method with more accuracy comparing to the Fourier transform infrared spectroscopy method.

کلیدواژه‌ها [English]

  • Thermoplastic Starch
  • starch content evaluation
  • bio-based polymer
 1. Lu, D.R., Starch-based completely biodegradable polymer
materials, J. Polymer letters, 46, 366-375, 2009.
2. Mendes, J.F., Biodegradable polymer blends based on corn
starch and thermoplastic chitosan processed extrusion, J.
Carbohydrate Polymers, 137, 452-458, 2016.
3. FAJARDO, Paula, et al. Evaluation of a chitosan-based edible film as carrier of natamycin to improve the storability of
Saloio cheese. Journal of Food Engineering, 101, 349-356,
2010.
4. Rodriguez-Gonzalez, F.J.; Ramsay, B.A.; Favis, B.D.
High-performance LDPE/thermoplastic starch blends: A
sustainable alternative to pure polyethylene. Polymer, 44,
1517–1526, 2004.
5. Zhang, J.F.; Sun, X. Mechanical properties of poly (lactic
acid)/starch composites compatibilized by maleic anhydride.
Biomacromolecules, 5, 1446–1451, 2004.
6. Siracusa, V., Biodegradable polymers for food packaging: a
review, J. Trends in Food Science & Technology, 19, 634-
643, 2008.
7. Robyt, John F., Essentials of carbohydrate chemistry. Springer Science & Business Media, Department of biochemistry
and biophysics, 1998.
8. Olaiya, N.G., Properties and Characterization of a PLA-Chitin-Starch Biodegradable Polymer Composite, J. polymers,
11, 1-16, 2019.
9. MARTIN, Olivier, et al. Properties of biodegradable multilayer films based on plasticized wheat starch. Starch
-Stärke,
53, 372-380, 2001.
10. CARMONA, Vitor Brait, et al. Kinetics of thermal degradation applied to biocomposites with TPS, PCL and sisal fibers
by non-isothermal procedures. Journal of Thermal Analysis
and Calorimetry, 2014, 115.1: 153-160.
11. R.N. Tharanathan, Biodegradable films and composite coatings: Past, present, andfuture. Trends in Food Science and
Technolog,14, 71-78, 2003.
12. Pareta R., A novel method for the preparation of starch films
and coatings. Carbohydrate Polymer, 63, 425–431, 2006.
13. Gong, Q., In situ polymerization of starch with lactic acid in
aqueous solution and the microstructure characterization, J.
Carbohydrate Polymers., 64, 501-509.2006.
14. Chen, L., A novel approach to grafting polymerization of
ε-caprolactone onto starch granules”, J. Carbohydrate Polymers., 60, 103-109, 2006.
15. S Mali, M.V.E., Microstrucural characterization of yam
starch films. Carbohydrate Polymers, 50, 379-386, 2002.
16. Willett, J.L., Starch in polymer compositions, US Depart
ment of Agriculture, Illinois, 2000.
  17. Katherine, E., An overview of starch-based biopolymers and
their biodegradability, J. science and engineering magazine.,
39, 245-258, 2018.
18. K. Van der Voort Maarschalk, H. Vromans, W. Groenendijk,
G.K. Bolhuis, C.F. Lerk, Effect of water on deformation and
bonding of pregelatinized starch compacts, Eur. J. Pharm.
Biopharm. 44 (1997) 253–260.
19. TUDORACHI, N., et al. Testing of polyvinyl alcohol and
starch mixtures as biodegradable polymeric materials. Polymer Testing, 19, 785-799, 2000.
20. Garlotta, D. A literature review of poly (lactic acid). J. Polym.
Environ, 9, 63–84, 2001.
21. Auras, R.; Harte, B.; Selke, S. An overview of polylactides as
packaging materials. Macromol. Biosci., 4, 835–864, 2004.
22. Wu, D.; Hakkarainen, M. Recycling PLA to multifunctional
oligomeric compatibilizers for PLA/starch composites. Eur.
Polym. J. 64, 126–137, 2015.
23. S.H. Kothari, V. Kumar, G.S. Banker, Comparative evaluations of powder and mechanical properties of low crystallinity celluloses, microcrystallline celluloses and powdered
celluloses, Int. J. Pharm.232 (2002) 69–80.
24. Zhang, J.F, Mechanical properties of Poly (lactic acid)/
Starch Composites Compatibilized by Maleic Anhydride J
Biomacromolecules. . 1446-1451. 2004.
25. Zobel, H.F., Starch: sources, production and properties, In:
Starch Hydrolysis Products, 1st edition, VCH Publishers,
New York, 1992.
26. Mais, A., Utilization of sweet potato starch, flour and fibre in
bread and biscuits: physico-chemical and nutritional characteristics, Massey University. New Zealand. 2008.
27. Chinoy, J. J., "A new iodine method for the determination of
starch." Analyst 59, 673-680, 1934.
28. CHINOY, J. J. A new iodine method for the determination of
starch. Part V. Starch in leaf material. Analyst, 63, 876-883,
1938.
29. PARK, Kyung Moon; WANG, Nam Sun. Alpha-amylase
assay with dyed-starch in polyethylene glycol and dextran
solutions. Biotechnology techniques, 5, 205-208, 1991.
30. Institute of Standards and Industrial Research of Iran. Disposable and biodegradable herbal containers based on
starch-Specifications and test methods. ICS: 55.230.
31. Hassan Mohamed, A.M., Chemistry2; Biochemistry; Department of Biochemistry Benha University, Agriculture
College, Egypet, 2015.
32. China National Standards. General requirement of disposable plastic tableware. GB 18006: 2008.
33. Mahmoud, A.A., FTIR Spectroscopy of Natural Bio-Polymers Blends”, J. Applied Sciences, 4, 816-824, 2014.
34. Warren, F.J., Infrared spectroscopy as a tool to characterize
starch ordered structure- a joint FTIR-ATR, NMR, XRD and
DSC study, J. Nutrition and Food Sciences., 11 ,1-26, 2015.
35. Goheen, S.M., Degradation of Polyethylene-Starch Blends
in Soil, J. Applied Polymer Science, 42, 2691-2701, 1991.
36. Jeiffer, F., Chemical Modification and Characterization of
starch Derived from Plantain Peel Waste, as a Source of Biodegradable Material, J. chemical engineering, 24, 2018.
37. Firyal, M.A., Synthesis and Characterization of Starch
grafted maleic anhydride and substituted with ampicillin,
J. Chemical and Pharmaceutical Sciences, 10, 1377-1382,
2017.
38. Vincent, T., Weathering of starch-Polyethylene Composite
Films in the Marine Environment, J. Applied Polymer Science, 48 , 2063-2079, 1993.
39. Mota, M., In-vitro degradation behaviour of starch/EVOH
biomaterials, J. Polymer Degradation and Stability, 73, 237-
244, 2001.
40. Kundys, A., Enzymatic Degradation of poly (butylenesuccinate) Thermoplastic Starch Blend”, J., Tech Science Press, 6,
611-617, 2018.
41. Alberta, M., Enzymatic degradation of starch thermoplastic
blends using samples of different thickness, J., Materials science, 20 ,607-614, 2009.
42. Gur, A., Colorimetric Method for starch Determination, J.,
Food chemistry, 17, 347-351, 1969.
43. Perkampus, H.H., UV-VIS Spectroscopy and its Applications, J. Springer Science & Business Media, 2013
44. Paloheimo, L., Determination of starch according to the principle of Iodine colorimetry. 3, 109-113, 1948.
45. Fratzke, A.R., Chemical Method for the Determination of Starch
in Polyethylene. J. Analytical letters, 24, 847-856, 1991.
46. Breslin, V.T.; “Degradation of Starch-Plastic Composites in
a Municipal Solid Waste Landfill”, Environmental Polymer
Degradation, Vol.1 (1993) pp 127-141.
47. Leng, Y., Materials characterization: Introduction to Microscopic and Spectroscopic Methods, Material characterization, Hong
Kong University of Science and Technology, 2008.
48. Thermogravimetric analysis, http://www.perkinelmer.com,
  (Last visited 30 August 2020)
49. Nakatsuka, S., Thermogravimetric Determination of Starch
Content in Starch-Polyethylene Blend Films, J., Applied Polymer Science, 45, 1881-1887, 1992.
50. Vega, D., Thermogravimetric analysis of starch-based biodegradable blends, J., Polymer Bulletin, 37, 229-235, 1996