سنتز غشای نانوالیاف پلی بوتیلن ترفتالات/نانولوله کربنی چند جداره و بررسی کاربرد در گیراندازی 2-کلرواتیل اتیل سولفید

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشکده تجهیزات و فناوری های انتظامی، پژوهشگاه علوم انتظامی و مطالعات اجتماعی

2 پژوهشگاه علوم انتظامی و مطالعات اجتماعی

چکیده

در مطالعه حاضر غشایی از پلی بوتیلن ترفتالات که با نانولوله کربنی چند جداره دوپ شده است، توسط فرآیند الکتروریسی نانوالیاف تهیه شد. تصاویر میکروسکوپ الکترونی از نانوکامپوزیت سنتز شده، ساختار همگن و سطح متخلخل فیلم را ثابت کرد. قابلیت و کارایی الیاف تهیه شده با بررسی جذب 2-کلرواتیل اتیل سولفید به عنوان یک ترکیب شبه گاز خردل، مورد آزمایش قرار گرفت. پارامترهای تأثیرگذار بر مورفولوژی نانوالیاف از جمله غلظت پلیمر و مقدار نانولوله کربن چند جداره بررسی و بهینه سازی شد. متغیرهای مهم در فرآیند جذب عامل شبه خردل، شامل: قدرت یونی، زمان جذب و دما بودند. برای این منظور، از مدل‌سازی چند متغیره بر اساس طراحی آزمایش با استفاده از طرح مرکب مرکزی و روش سطح-پاسخ، برای بهینه سازی عوامل تاثیرگذار در فرآیند استفاده شد. راندمان حذف 96 درصد در زمان جذب 12 دقیقه و دمای جذب C30° و غلظت اولیه عامل شبه خردل mg L-120، حاصل شد. نتایج بررسی ایزوترمهای جذب نشان داد که فرآیند جذب 2-کلرواتیل اتیل سولفید توسط نانوالیاف توسعه داده شده، از مدل لانگمویر (991/0R2=) و فرندلیچ (986/0R2=) تبعیت می‌کند. نتایج این پژوهش نشان داد که غشای نانوکامپوزیتی PBT/MWCNTs کارایی مناسبی در جذب و گیراندازی عامل شبه خردل 2-کلرواتیل اتیل سولفید دارند و می توانند در جهت توسعه پوشش های مقاوم در برابر این ترکیبات استفاده شوند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Synthesis of nanocomposite membranes based on polybutylene terephthalate /carbon nanotube for absorption of 2-chloroethyl ethyl sulfide

نویسندگان [English]

  • Hamid Abedi 1
  • Ali Roostaie 2
1 Department of Police Equipment and Technologies, Police Sciences and Social Studies Institute,
2 Police Sciences and Social Studies Institute
چکیده [English]

In the present study, a membrane of polybutylene terephthalate doped with multi-walled carbon nanotubes was prepared by the electrospinning process of nanofibers. Electron microscopy images of the synthesized nanocomposite proved the homogeneous structure and porous surface of the film. The capability and efficiency of the prepared fibers were tested by studying the adsorption of 2-chloroethyl ethyl sulfide as a mustard gas-like compound. Parameters affecting the morphology of nanofibers such as polymer concentration and the amount of multi-walled carbon nanotubes were investigated and optimized. Important variables in the mustard gas adsorption process included: ion strength, adsorption time and temperature. For this purpose, multivariate modeling based on experimental design using central composite design and response -surface methodology was used to optimize the factors affecting the process. The removal efficiency was 96% at the time of absorption of 12 minutes and the adsorption temperature was 30 ° C and the initial concentration of mustard-like agent was 20 mg L-1. The results of adsorption isotherms showed that the adsorption process of 2-chloroethyl ethyl sulfide by developed nanofibers follows the model of Langmuir (R2 = 0.991) and Friendlich (R2 = 0.986). The results of this study showed that PBT / MWCNTs nanocomposite membrane have good efficiency in adsorption and entrapment of mustard-like agent 2-chloroethyl ethyl sulfide and can be used to develop coatings against these compounds.

کلیدواژه‌ها [English]

  • Half mustard gas
  • Polybutylene terephthalate
  • Protective clothing
  • Nanocomposite membrane
  • Nanofibers
 [1] Saladi, R., Smith, E., Persaud, A., Mustard: a potential agent of chemical warfare and terrorism. Clinical and Experimental Dermatology, Clin. Exp. Dermatol., 31, 1-5, 2006.
[2] Etemad, L., Moshiri, M., & Balali-Mood, M. History of use and epidemiology of mustard compounds. In Basic and Clinical Toxicology of Mustard Compounds: Springer, 29-47, 2015.
[2] Thiermann, H., Worek, F., Kehe, K., Limitations and challenges in treatment of acute chemical warfare agent poisoning. Chem. Biol. Interact., 206, 435-443, 2013.
[3] Liang, H., Yao, A., Jiao, X., Li, C., Chen, D., Fast and sustained degradation of chemical warfare agent simulants using flexible self-supported metal–organic framework filters. ACS Appl. Mater. Interfaces, 10, 20396-20403, 2018.
[4] Maddah, B., Azimi, M., Preparation of N, N-dichloropolystyrene sulfonamide nanofiber as a regenerable self-decontaminating material for protection against chemical warfare agents. Int. J. Nano Dimens., 2, 253-259, 2012.
[5] Krueger, G. P. 4 - Psychological issues in military uniform design. In E. Sparks (Ed.), Advances in Military Textiles and Personal Equipment: Woodhead Publishing, 64-82, 2012.
[6] Roy Choudhury, A. K., Majumdar, P. K., & Datta, C. 1 - Factors affecting comfort: human physiology and the role of clothing. In G. Song (Ed.), Improving Comfort in Clothing: Woodhead Publishing, 3-60, 2011.
[7] Robert, B., Nallathambi, G., A concise review on electrospun nanofibres/nanonets for filtration of gaseous and solid constituents (PM2.5) from polluted air. Colloid Int. Sci. Comm., 37, 100275, 2020.
[8] Dadvar, S., Tavanai, H., Morshed, M., Ghiaci, M., The removal of 2-chloroethyl ethyl sulfide using activated carbon nanofibers embedded with MgO and Al2O3 nanoparticles. J. Chem. Eng. Data, 57, 1456-1462, 2012.
[9] Sundarrajan, S., Tan, K. L., Lim, S. H., Ramakrishna, S., Electrospun nanofibers for air filtration applications. Procedia Eng. 75, 159-163, 2014.
[10] Li Q., Wang X., Yuan D., Preparation of solid-phase microextraction coated with single-walled carbon nanotubes by electrophoretic deposition and its application in extracting phenols from aqueous samples. J. Chromatogr. A, 1216, 1305–1311, 2009.
[11] Bagheri H., Aghakhani A., Polyaniline-nylon-6 electrospun nanofibers for headspace adsorptive microextraction. Anal. Chim. Acta, 713, 63–69, 2012.
 [12] Peterson, G. W., Lu, A. X., Epps III, T. H., Tuning the morphology and activity of electrospun polystyrene/UiO-66-NH2 metal–organic framework composites to enhance chemical warfare agent removal. ACS Appl. Mater. Interfaces, 9, 32248-32254, 2017.
 [13] Zhang Y., Wei S., Liu F., Du Y., Liu S., Ji Y., Superhydrophobic nano porous polymers as efficient adsorbents for organic compounds. Nano Today, 4, 135–142, 2009.
[14] Arash, Q. Wang, A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes, Comp. Mater. Sci. 51, 303-313, 2012.
[15] Y.Q. Cai, G.B. Jiang, J.F. Liu, Q.X. Zhou, Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of bisphenol A,4-n-nonylphenol, and 4-tert-octylphenol, Anal. Chem. 75, 2517–2521, 2003.
[16] W. Du, F.Q. Zhao, B.Z. Zeng, Novel multiwalled carbon nanotubes-polyaniline composite film coated platinum wire for headspace solid-phase microextraction and gas chromatographic determination of phenolic compounds, J. Chromatogr. A, 1216, 3751–3757, 2009.
 [17] Bagheri H., Aghakhani A., Akbari M., Ayazi Z., Electrospun composite of polypyrrole–polyamide as a micro-solid phase extraction sorbent. Anal. Bioanal. Chem., 400, 3607–3611, 2011.
[18] Kang X.J., Pan C., Xu Q., Yao Y.F., Wang Y., Qi D.J., Gu Z.Z., The investigation of electrospun polymer nanofibers as a solid-phase extraction sorbent for the determination of trazodone in human plasma. Anal. Chim. Acta, 587, 75–81, 2007.
[19] Rutledge G.C., Fridrikh S.V., Formation of fibers by electrospinning, Adv. Drug. Deliv. Rev., 59, 1384–1391, 2007.
[20] Forouharshad, M., Saligheh, O., Arasteh, R., & Farsani, R. E., Manufacture and characterization of poly (butylene terephthalate) nanofibers by electrospinning. J. Macromol. Sci., Part B, 49, 833-842, 2010.
[21] Bagheri, H., & Roostaie, A. Polybutylene terephthalate-nickel oxide nanocomposite as a fiber coating. Anal. Chim. Acta, 863, 20-28, 2015.
[22] Bagheri, H., Najafi Mobara, M., Roostaie, A., & Baktash, M. Y. Electrospun magnetic polybutylene terephthalate nanofibers for thin film microextraction. J. Sep. Sci., 40, 3857-3865, 2017.
[23] Ra, E.J., An, K.H.; Kim, K.K.; Jeong, S.Y.; Lee, Y.H. Anisotropic electrical conductivity of MWCNT/PAN nanofiber paper. Chem. Phys. Lett., 413, 188–193. 2005.
[24] Chen, H.; Liu, Z.; Cebe, P. Chain confinement in electrospun nanofibers of PET with carbon nanotubes. Polymer, 50, 872–880, 2009.
[25] Saligheh, O., Arasteh, R., Forouharshad, M., & Farsani, R. E. Poly(Butylene Terephthalate)/Single Wall Carbon Nanotubes Composite Nanofibers by Electrospinning. J. Macromol. Sci., Part B, 50(6), 1031-1041, 2011.
[26] Naebe, M., Lin, T., Tian,W., Dai, L.M., Wang, X.G., Effects of MWNT nanofillers on structures and properties of PVA electrospun nanofibres. Nanotechnology, 18, 225605, 2007.
[27] Palasota, J. A., & Deming, S. N. Central composite experimental designs: Applied to chemical systems. J. Chem. Educ., 69, 560, 1992.
 [28] Abedi, H., Ebrahimzadeh, H., Electromembrane-surrounded solid-phase microextraction coupled to ion mobility spectrometry for the determination of nonsteroidal anti-inflammatory drugs: A rapid screening method in complicated matrices. J. Sep. Sci., 38, 1358-1364, 2015.
[29] Nazari, A. Statistical Optimization of Durable Multifunctional Properties of Cellulase Cotton Using Nano-TiO2 Sonoloading. J. Text. Polym., 8, 3-16, 2020.
[30] Nazari, A. Modeling and Optimization of Colloidal Nanosilver Pretreatment on Acid-Free Dyeing, Antibacterial, and Hydrophilicity of Polyamide-6,6 Using Response Surface Methodology. J Text. Polym., 9, 27-40, 2021.
[31] Sarafraz-Yazdi, A., Amiri, A.H., Ronagi, G., Hosseini, H.E., A novel solid-phase microextraction using coated fiber-based sol–gel technique using poly (ethylene glycol) grafted multi-walled carbon nanotubes for determination of benzene toluene, ethylbenzene and o-xylene in water samples with gas chromatography–flam ionization detector, J. Chromatogr. A, 1218, 5757–5764, 2011.
[32] Kang, X. j., Chen, L. q., Zhang, Y. y., Liu, Y. w., & Gu, Z. z., Performance of electrospun nanofibers for SPE of drugs from aqueous solutions. J. Sep. Sci., 31, 3272-3278, 2008.
[33] Moghaddam, A. Z., Bojdi, M.K., Nakhaei, A., Ganjali, M.R., Alizadeh, T., Faridbod, F. Ytterbium tungstate nanoparticles as a novel sorbent for basic dyes from aqueous solutions. Res. Chem. Intermed., 44, 6945-6965, 2018.
[34] Li, Y., Sui, K., Liu, R., Zhao, X., Zhang, Y., Liang, H., Removal of methyl orange from aqueous solution by calcium alginate/multi-walled carbon nanotubes composite fibers. Energy Procedia. 863–868, 2012.
[35] Ren, Y., Abbood, H.A., He, F., Peng, H., Huang, K., Magnetic EDTA-modified chitosan/SiO2/Fe3O4 adsorbent: Preparation, characterization, and application in heavy metal adsorption. Chem. Eng. J. 226, 300-311, 2013.