مروری بر انتقال حرارت در منسوجات بخش دوم: مطالعات مدل‌سازی

نوع مقاله: مقاله مروری - مطالعاتی

نویسندگان

1 یزد، دانشگاه یزد، مجتمع فنی و مهندسی، دانشکده مهندسی نساجی

2 عضو هیات علمی دانشکده مهندسی نساجی دانشگاه یزد

چکیده

درک تأثیر پارامترهای ساختاری و هندسی منسوجات بر خواص فیزیکی و حرارتی آن­ها، با روش­های شبیه‌سازی و مدل‌سازی امکان­پذیر است. مطالعات مختلفی جهت مدل‌سازی انتقال حرارت در منسوجات، به منظور تعیین نحوه توزیع حرارت در منسوج، محاسبه ضریب هدایت حرارتی و یا مقاومت حرارتی انجام شده است. از روش­های مدل­سازی، برای بیان ریاضی پدیده انتقال حرارت استفاده می­شود. این روش­ها، عمدتاً بر اساس هندسه هستند که به مدل­سازی بر اساس روابط مقاومت­ها، اجسام دوفازی و حل معادلات بر مبنای روش­های تحلیلی و عددی تقسیم می­شوند. در مطالعاتی که یک منسوج به صورت کلی یا مجموعه­ چند لایه، مورد بررسی است، به ترتیب قوانین اجسام دوفازی و روابط مقاومت­ها مورد استفاده قرار می­گیرند. حل تحلیلی در مسائل ساده یا مسائلی که بتوان آن‌ها را با تقریب‌های قابل قبولی ساده کرد، استفاده می­شود و حل عددی، در مسائل پیچیده­تر با روش­های تفاضل محدود، اجزای محدود و حجم محدود انجام می­شود. در این مطالعه، پژوهش­های انجام شده در زمینه روش­های مدل‌سازی جهت تعیین خواص حرارتی منسوجات مرور شده است.

کلیدواژه‌ها


[1] Bhattacharjee, D., and Kothari, V. K., Heat transfer through woven textiles. Int. J. Heat and Mass Trans., 52, 2155-2160, 2009.
[2] سنجل، ی. الف.، قجر، الف. ج.، مترجمان: عالم رجبی، ع. الف.، نصرآزادانی، ع.، یدالله پور، م.، انتقال گرما و جرم، ویرایش چهار. 1393.
[3] Ismail, M. I., Ammar, A. S. A., and El-Okeily, M., Heat transfer through textile fabrics: mathematical model. Appl. math. model., 12, 434-440, 1988.
[4] Shen, H., Tu, L., Yan, X. and Sukigara, S., Obtaining the thermal resistance of air enclosed at the interface of multilayer fabrics by simulation. Tex. Res. J., 89, 3178-3188, 2019.
[5] Das, A., Alagirusamy, R., and Kumar, P., Study of heat transfer through multilayer clothing assemblies: a theoretical prediction, AUTEX. Res. J., 11, 54-60, 2011.
[6] Ziaei, M., and Ghane, M., Thermal insulation property of spacer fabrics integrated by ceramic powder impregnated fabrics. J. Indus. Tex., 43, 20-33, 2013.
[7] Schuhmeister, J., Ber. K. Akad. Wien (Math.-Naturw. Klasse), 76, 283, 1877.
[8] Lizák, P., and Mojumdar, S. C., Influence of the material structure on the thermal conductivity of the clothing textiles. J. Thermal. Analy. Calorimetry., 119, 865-869, 2015.
[9] Fricke, H., A mathematical treatment of the electric conductivity and capacity of disperse systems I. The electric conductivity of a suspension of homogeneous spheroids. Phys. Rev., 24, 575, 1924.
[10] Arumugam, V., Mishra, R., Militky, J., and Salacova, J., Investigation on thermo-physiological and compression characteristics of weft-knitted 3D spacer fabrics. J. Tex. Ins., 108, 1095-1105, 2017.
[11] Schuster, J., Heider, D., Sharp, K., and Glowania, M., Measuring and modeling the thermal conductivities of three-dimensionally woven fabric composites. Mech. Composite. Mat.45, 165, 2009.
[12] Ukponmwan, J.O., The thermal-insulation properties of fabrics. Tex. Prog., 24, 1-57, 1993.
[13] Stark, C. and Fricke, J., Improved heat-transfer models for fibrous insulations. Int. J. Heat and Mass. Trans., 36, 617-625, 1993.
[14] Mao, N., and Russell, S. J., The thermal insulation properties of spacer fabrics with a mechanically integrated wool fiber surface. Tex. Res. J., 77, 914-922, 2007.
[15] Wei, J., Xu, S., Liu, H., Zheng, L., and Qian, Y., Simplified Model for Predicting Fabric Thermal Resistance According to its Microstructural Parameters. Fibres. Tex. East. Eur., 23, 57-60, 2015.
[16] Cimilli, S., Nergis, F. B. U., and Candan, C., Modeling of heat transfer measurement unit for cotton plain knitted fabric using a finite element method. Tex. Res. J., 78, 53-59, 2008.
[17] Barauskas, R., and Abraitiene, A., A model for numerical simulation of heat and water vapor exchange in multilayer textile packages with three-dimensional spacer fabric ventilation layer. Tex. Res. J., 81, 1195-1215, 2011.
[18] Siddiqui, M. O. R., and Sun, D., Automated model generation of knitted fabric for thermal conductivity prediction using finite element analysis and its applications in composites. J. Indus. Tex., 45, 1038-1061, 2016.
[19] Ran, X. J., Zhu, Q. Y., and Li, Y., Investigation on heat and mass transfer in 3D woven fibrous material. Int. J. Heat and Mass. Trans., 54, 3575-3586, 2011.
[20]Puszkarz, A. K., and Krucinska, I., The study of knitted fabric thermal insulation using thermography and finite volume method. Tex. Res. J., 87, 643-656, 2017.
[21] Fontana, É., Donca, R., Mancusi, E., Ulson de Souza, A. A., and Guelli Ulson de Souza, S. M., Mathematical modeling and numerical simulation of heat and moisture transfer in a porous textile medium. J. Tex. Ins., 107, 672-682, 2016.
[22] Majumdar, A., Modelling of thermal conductivity of knitted fabrics made of cotton–bamboo yarns using artificial neural network. J. Tex. Ins., 102, 752-762, 2011.
[23] Ghorbani, E., Zarrebini, M., Hasani, H., and Shanbeh, M., Modeling the Moisture and Heat Transfer of Warp Knitted Spacer Fabrics Using Artificial Neural Network Algorithm. Tex. Light. Indus. Sci. Tech., 4, 17-26, 2015.
[24] Fayala, F., Alibi, H., Benltoufa, S., and Jemni, A., Neural Network for Predicting Thermal Conductivity of Knit Materials. J. Eng. Fabrics and Fibers., 3, 53-60, 2008.
[25] Zhu, F., and Li, K., Determining effective thermal conductivity of fabrics by using fractal method. Int. J. Thermophysics., 31, 612-619, 2010.
[26] Shabaridharan, K., and Das, A., Modeling of thermal properties of multilayered fabrics by ANN consisting of polypropylene needle-punched nonwovens.  J. Tex. Ins., 105, 109-118, 2014.
 [27] اینکروپرا، ف. پ.، پی دویت، د.، مترجمان، رستمی، ع. الف.، شیرازی، م.، مقدمه‌ای بر انتقال گرما. ویرایش چهار. 1385.
[28] Cengel, Y. A., Heat tranfer a practical approach. McGraw-Hill. 2003.
[29] قدیمی، پ.، دینامیک سیالات محاسباتی کاربردی - جلد اول (مبتنی بر روش‌های عددی تفاضل محدود، اجزاء محدود و حجم محدود). 1394.
[30] معدولیت، ر.، فرجی، م.، روش اجزاء محدود. 1386.
[31] Wang, J., Carson, J.K., North, M.F. and Cleland, D.J., A new approach to modelling the effective thermal conductivity of heterogeneous materials. Int. J. Heat Mass trans., 49, 3075-3083, 2006.
[32] Eucken, A., Allgemeine gesetzmäßigkeiten für das wärmeleitvermögen verschiedener stoffarten und aggregatzustände. Forschung auf dem Gebiet des Ingenieurwesens., 11, 6-20, 1940.
[33] Maxwell, J. C., A Treatise on Electricity and Magnetism, third ed., Dover Publications Inc., New York, reprinted (Chapter 9), 1954.
[34] Landauer, R., The electrical resistance of binary metallic mixtures. J. Appl. Phys., 23, 779-784. 1952.
[35] Bottcher, C. J. F., van Belle, O. C., Bordewijk, P., Rip, A., Theory of electric polarization. Elsevier Science Ltd. 1978. 
[36] Barauskas, R., Sankauskaite, A., and Abraitiene, A., Investigation of the thermal properties of spacer fabrics with bio-ceramic additives using the finite element model and experiment. Tex. Res. J., 88, 293-311, 2018.
[37] Matusiak, M., Modelling the thermal resistance of woven fabrics. J. Tex. Ins., 104, 426-437. 2013.
[38] Huang, J., Wu, J. and Xu, W., Coupling effects of steady-state heat and water vapor transfer through fabrics. Tex. Res. J., 84, 2157-2165. 2014.
[39] Kothari, V. K., & Bhattacharjee, D. Prediction of thermal resistance of woven fabrics. Part I: Mathematical model. J. Tex. Ins., 99, 421-432, 2008.
[40] Zhu, G., Kremenakova, D., Wang, Y., Militky, J., and Mazari, F. B., An analysis of effective thermal conductivity of heterogeneous materials. AUTEX. Res. J., 14, 14-21, 2014.
[41] Sun, Z. and Pan, N., Thermal conduction and moisture diffusion in fibrous materials, in Thermal and moisture transport in fibrous materials, Pan, N. and P.Gibson, Editors. Woodhead Publishing Ltd: North America, 439-466, 2006.
 [42] Fan, J., Luo, Z., and Li, Y., Heat and moisture transfer with sorption and condensation in porous clothing assemblies and numerical simulation. Int. J. Heat and Mass. Trans., 43, 2989-3000, 2000.
[43] Zhang, Q., and Sun, W., A numerical study of air–vapor–heat transport through textile materials with a moving interface. J. Comput. Appl. Math., 236, 819-833, 2011.
[44] Shen, H., Yokoyama, A., and Sukigara, S., Modeling of heterogeneous heat transfer in fabrics. Tex. Res. J., 88, 1164-1172, 2018.
[45] Zheng, Z., Wang, H., Zhao, X., and Zhang, N., Simulation of the effects of structural parameters of glass fiber fabric on the thermal insulation property. Tex. Res. J., 88, 1954-1964, 2018.
[46] Siddiqui, M. O. R., and Sun, D., Thermal analysis of conventional and performance plain woven fabrics by finite element method. J. Indu. Tex., 48, 685-712, 2018.
[47] Siddiqui, M. O. R., Sun, D., and Butler, I. B., Geometrical modelling and thermal analysis of nonwoven fabrics. J. Indu. Tex., 48, 405-431, 2018.