مروری بر انتقال حرارت در منسوجات بخش اول: مطالعات تجربی

نوع مقاله: مقاله مروری - مطالعاتی

نویسندگان

1 یزد، دانشگاه یزد، مجتمع فنی و مهندسی، دانشکده مهندسی نساجی

2 عضو هیات علمی دانشکده مهندسی نساجی دانشگاه یزد

چکیده

شناخت خواص حرارتی منسوجات مانند راحتی حرارتی، حفاظت حرارتی و عایق حرارتی، یکی از موضوعات مورد توجه در صنایع می‌باشد. هدایت حرارتی و عایق حرارتی، پارامترهای کلیدی در انتقال حرارت در منسوجات به­شمار می­روند و آن­ها را می­توان با روش‌های مختلف، شامل روش‌های تجربی، حل تحلیلی و عددی ارزیابی کرد. در این میان، روش‌های عددی و تجربی بیشتر مورد توجه قرارگرفته است. تحلیل و شناخت رفتار حرارتی منسوجات با ویژگی‌های هندسی و ساختاری متفاوت با روش‌های تجربی امکان‌پذیر است. موارد تأثیرگذار بر خواص حرارتی شامل مواد سازنده، خواص ساختاری، ظرافت، سطح مقطع، تخلخل، ساختار نخ و خواص آن و همچنین ویژگی‌های ساختاری و فیزیکی پارچه و خواص تکمیلی بر روی آن است. هدف از این مطالعه، مرور پژوهش‌های تجربی انجام شده، جهت تعیین رفتار حرارتی منسوجات است. در بخش اول، روش‌های اندازه‌گیری خواص حرارتی مرور و در ادامه پارامترهای هندسی و ساختاری تأثیرگذار بر خواص حرارتی و معرفی شده توسط محققین، ارائه شده است.
 

کلیدواژه‌ها


[1] Ukponmwan, J.O., The thermal-insulation properties of fabrics. Textile Progress., 24, 1-57, 1993.
[2] دهقان، ن.، پیوندی، پ.، بهینه‌سازی مدل هدایت حرارتی پارچه‌های اسپیسر با استفاده از الگوریتم رقابت استعماری، یازدهمین کنفرانس ملی مهندسی نساجی، دانشگاه گیلان اردیبهشت 1397.
[3] Arumugam, V., Mishra, R., Militky, J., and Salacova, J., Investigation on thermo-physiological and compression characteristics of weft-knitted 3D spacer fabrics. J. Tex. Ins., 108, 1095-1105, 2017.
[4] Prakash, C., Ramakrishnan, G., Effect of blend proportion on thermal behaviour of bamboo knitted fabrics. J. Tex. Ins., 104, 907-913, 2013.
[5] Kadapalayam Chinnasamy, K., Chidambaram, P., Influence of the bamboo/cotton fibre blend proportion on the thermal comfort properties of single jersey knitted fabrics. Fibres. Tex. East. Eur., 2017.
[6] Varshney, R.K., Kothari, V.K. and Dhamija, S., A study on thermophysiological comfort properties of fabrics in relation to constituent fibre fineness and cross-sectional shapes. J. Tex. Ins., 101, 495-505, 2010.
[7] Afzal, A., Ahmad, S., Rasheed, A., Ahmad, F., Iftikhar, F. and Nawab, Y., Influence of fabric parameters on thermal comfort performance of double layer knitted interlock fabrics. Autex. Res. J., 17, 20-26, 2017.
[8] Onal, L., and Yildirim, M., Comfort properties of functional three-dimensional knitted spacer fabrics for home-textile applications. Tex. Res. J., 82, 1751-1764, 2012.
[9] Karaca, E., Kahraman, N., Omeroglu, S. and Becerir, B., Effects of fiber cross sectional shape and weave pattern on thermal comfort properties of polyester woven fabrics. Fibres. Tex. East. Eur., 3, 67-72, 2012.
[10] Bogaty, H., Hollies, N.R. and Harris, M., Some thermal properties of fabrics: part I: The effect of fiber arrangement. Tex. Res. J., 27, 445-449, 1957.
[11] Raja, D., Prakash, C., Gunasekaran, G. and Koushik, C.V., A study on thermal properties of single-jersey knitted fabrics produced from ring and compact folded yarns. J. Tex. Ins., 106, 359-365, 2015.
[12] Karunamoorthy, S., and Das, A., Study on thermal resistance of multilayered fabrics under different compressional loads. J. Tex. Ins., 105, 538-546, 2014.
[13] Shabaridharan, M., and Das, A., Study on thermal and evaporative resistances of multilayered fabric ensembles. J. Tex. Ins., 104, 1025-1041, 2013.
[14] اینکروپرا، ف. پ.، پی دویت، د.، مترجمان، رستمی، ع. الف.، حمایت، ش.، مقدمه ای بر انتقال حرارت. 1367.
[15] سنجل، ی. الف.، قجر، الف. ج.، مترجمان: عالم رجبی، ع. الف.، نصرآزادانی، ع.، یدالله پور، م.، انتقال گرما و جرم، ویرایش چهار. 1393.
[16] Ghosh, A., Mal, P., Majumdar, A., and Banerjee, D., An investigation on air and thermal transmission through knitted fabric structures using the Taguchi method. Autex. Res. J., 17, 152-163, 2017.
[17] Ertekin, M., Ertekin, G., and Marmaralı, A., Analysis of thermal comfort properties of fabrics for protective applications. J. Tex. Ins., 109, 1091-1098, 2018.
 [18] اینکروپرا، ف. پ.، پی دویت، د.، مترجمان، رستمی، ع. الف.، شیرازی، م.، مقدمه‌ای بر انتقال گرما. ویرایش چهار. 1385.
[19] Özdemir, H., Thermal comfort properties of clothing fabrics woven with polyester/cotton blend yarns. Autex. Res. J., 17, 135-141, 2017.
[20] Kothari, V.K., and Bhattacharjee, D., Prediction of thermal resistance of woven fabrics. Part I: Mathematical model. J. Tex. Ins., 99, 421-432, 2008.
[21] Cengel, Y. A., Heat tranfer a practical approach. McGraw-Hill. 1-60, 2003.
[22] Erdumlu, N., and Saricam, C., Investigating the effect of some fabric parameters on the thermal comfort properties of flat knitted acrylic fabrics for winter wear. Tex. Res. J., 87, 1349-1359, 2017.
[23] Oglakcioglu, N., Celik, P., Ute, T.B., Marmarali, A., and Kadoglu, H., Thermal comfort properties of angora rabbit/cotton fiber blended knitted fabrics. Tex. Res. J., 79, 888-894, 2009.
[24] ASTM D 1518-85: Standard test method for thermal transmittance of textile materials, American Society for Testing and Materials, 2003.
[25] Saville, B.P., Comfort, in Physical testing of textiles. Woodhead Publishing Limited: Cambridge, England. 209-243, 1999.
[26] KES-F7 Thermo-Lab-II B, precise and fast Thermal-property measuring instrument. Katotech Ltd: Japan.
[27] Mahanta, N. K., and Abramson, A. R., The dual-mode heat flow meter technique: A versatile method for characterizing thermal conductivity. Int. J. Heat and Mass. Trans., 53, 5581-5586, 2010.
[28] DTC-25. Thermal conductivity meter, TA Instruments: USA, 2014.
[29] ASTM E1530: Standard test method for evaluating the resistance of thermal transmission of materials by the guarded heat flow meter technique. American Society for Testing and Materials.
[30] Hes, L., and Dolezal, I., New method and equipment for measuring thermal properties of textiles, J. Tex. Machin. Society. Japan., 42, T124-T128, 1989.
[31] Standard, B., BS 4745: Determination of the thermal resistance of textiles-Two plate method: Fixed pressure procedure., British Standard Institution, 2005.
[32] Uttam, D., Objective measurement of heat transport through clothing. Int. J. Eng. Res. Develop., 2, 43-47, 2012.
[33] Fayala, F., Alibi, H., Benltoufa, S., and Jemni, A., Neural Network for Predicting Thermal Conductivity of Knit Materials. J. Eng. Fabrics & Fibers, 3, 53-60, 2008.
[34] Zhu, L., Wang, X., Blanchonette, I. and Naebe, M., Thermal comfort properties of bifacial fabrics. Tex. Res. J., 89, 43-51, 2019.
[35] Xiao, X., Hua, T., Wang, J., Li, L., and Au, W., Transfer and mechanical behavior of three-dimensional honeycomb fabric. Tex. Res. J., 85, 1281-1292, 2015.
[36] Yang, Y., and Hu, H., Spacer fabric-based exuding wound dressing–Part I: Structural design, fabrication and property evaluation of spacer fabrics. Tex. Res. J., 87, 1469-1480, 2017.
[37] Zhu, L., Naebe, M., Blanchonette, I., and Wang, X., Heat transfer properties of bifacial fabrics. Tex. Res. J., 87, 2307-2313, 2017.
[38] Shen, H., Xie, K., Shi, H., Yan, X., Tu, L., Xu, Y., and Wang, J., Analysis of heat transfer characteristics in textiles and factors affecting thermal properties by modeling. Tex. Res. J., 2019.
[39] Abro, Z.A., Chen, N., Yifan, Z., Cheng-Yu, H., Abassi, A.M.R., Simair, A.A., Ahmed, R. and Hussain, A., Investigation on Thermal Comfort Characteristics of Regenerated Bamboo and Cotton Woven Structured Fabrics. Autex. Res. J., 18, 323-329, 2018.
[40] Korycki, R., and Więzowska, A., Relation between basic structural parameters of knitted fur fabrics and their heat transmission resistance. Fibres. Tex. East. Eur., 16, 68-75, 2008.
[41] Matusiak, M., Modelling the thermal resistance of woven fabrics. J. Tex. Ins., 104, 426-437. 2013.
[42] Özkan, E.T., and Meriç, B., Thermophysiological comfort properties of different knitted fabrics used in cycling clothes. Tex. Res. J., 85, 62-70, 2015.
[43] Angelova, R.A., Kyosov, M., and Stankov, P., Numerical investigation of the heat transfer through woven textiles by the jet system theory. J. Tex. Ins., 110, 386-395, 2019.
[44] Mangat, M.M., Hes, L., and Bajzík, V., Thermal resistance models of selected fabrics in wet state and their experimental verification. Tex. Res. J., 85, 200-210, 2015.
[45] Jamshaid, H., Mishra, R., and Militky, J., Thermal and mechanical characterization of novel basalt woven hybrid structures. J. Tex. Ins., 107, 462-471, 2016.
[46] Mahbub, R.F., Wang, L., Arnold, L., Kaneslingam, S., and Padhye, R., Thermal comfort properties of Kevlar and Kevlar/wool fabrics. Tex. Res. J., 84, 2094-2102, 2014.
[47] Majumdar, A., Modelling of thermal conductivity of knitted fabrics made of cotton–bamboo yarns using artificial neural network. J. Tex. Ins., 102, 752-762, 2011.
[48] Ramakrishnan, G., Umapathy, P., and Prakash, C., Comfort properties of bamboo/cotton blended knitted fabrics produced from rotor spun yarns. J. Tex. Ins., 106, 1371-1376, 2015.
[49] Jankoska, M., and Demboski, G., Influence of structure variation and finishing on woven fabric thermal properties. Fibres. Tex. East. Eur., 2018.
[50] Oğlakcioğlu, N., and Marmarali, A., Thermal comfort properties of some knitted structures. Fibres. Tex. East. Eur., 15, 64-65, 2007.
[51] Li, Y., Zhu, Q., and Yeung, K.W., Influence of thickness and porosity on coupled heat and liquid moisture transfer in porous textiles. Tex. Res. J., 72, 435-446, 2002.
[52] Nazir, M.U., Shaker, K., Nawab, Y., Fazal, M.Z., Khan, M.I., and Umair, M., Investigating the effect of material and weave design on comfort properties of bilayer-woven fabrics. J. Tex. Ins., 108, 1319-1326, 2017.
[53] Kakvan, A., Shaikhzadeh Najar, S., and Psikuta, A., Study on effect of blend ratio on thermal comfort properties of cotton/nylon-blended fabrics with high-performance Kermel fibre. J. Tex. Ins., 106, 674-682, 2015.
[54] Kaleeswaran, P., and Kothari, V.K., Thermal resistance of nonwoven waddings. J. Tex. Ins., 108, 1657-1661, 2017.
[55] Zheng, Z., Wang, H., Zhao, X., and Zhang, N., Simulation of the effects of structural parameters of glass fiber fabric on the thermal insulation property. Tex. Res. J., 88, 1954-1964, 2018.
[56] Gnanauthayan, G., Rengasamy, R.S., and Kothari, V.K., Heat insulation characteristics of high bulk nonwovens. J. Tex. Ins., 108, 2173-2179, 2017.
[57] Martin, J.R., and Lamb, G.E., Measurement of thermal conductivity of nonwovens using a dynamic method. Tex. Res. J., 57, 721-727, 1987.
[58] Jhanji, Y., Gupta, D., and Kothari, V.K., Effect of loop length and filament fineness on thermo-physiological properties of polyester-cotton plated knit structures. J. Tex. Ins., 106, 383-394, 2015.
[59] Chidambaram, P., Govind, R., and Venkataraman, K.C., The effect of loop length and yarn linear density on the thermal properties of bamboo knitted fabric. Autex. Res. J., 11, 102-105, 2011.
[60] Senthil Kumar, B., and Ramachandran, T., Influence of Knitting Process Parameters on the Thermal Comfort Properties of Eri Silk Knitted Fabrics. Fibres. Tex. East. Eur., 2018.
[61] Kaynak, H.K., and Babaarslan, O., Effects of filament linear density on the comfort related properties of polyester knitted fabrics. Fibres. Tex. East. Eur., 2016.
[62] Jhanji, Y., Gupta, D., and Kothari, V.K., Thermal and mass transport properties of polyester–cotton plated fabrics in relation to back layer fibre profiles and face layer yarn types. J. Tex. Ins., 109, 669-676, 2018.
[63] Bakhtiari, M., Hasani, H., Zarrebini, M., and Hassanzadeh, S., Investigation of the thermal comfort properties of knitted fabric produced from Estabragh (Milkweed)/cotton-blended yarns. J. Tex. Ins., 106, 47-56, 2015.
[64] Celep, G., and Yüksekkaya, M.E., Comparison of thermal comfort properties of single jersey fabrics produced by hollow yarns with different hollowness ratio. J. Tex. Ins., 108, 165-171, 2017.
[65] Dal, V., Şimşek, R., Hes, L., Akçagün, E., and Yilmaz, A., Investigation of thermal comfort properties of zinc oxide coated woven cotton fabric. J. Tex. Ins., 108, 337-340, 2017.
[66] Hes, L., and de Araujo, M., Simulation of the effect of air gaps between the skin and a wet fabric on resulting cooling flow. Tex. Res. J., 80, 1488-1497, 2010.
[67] Du, N., Fan, J., and Wu, H., Optimum porosity of fibrous porous materials for thermal insulation. Fibers & Polymers, 9, 27-33, 2008.
[68] Mangat, M.M., Militký, J., and Hes, L., Thermal resistance of cotton denim fabric under various moisture conditions. Compar. Wet. Milling. Action. Fibrous. Solid. Mat., 16, 35, 2012.
[69] Crina, B., Blaga, M., Luminita, V., and Mishra, R., Comfort Properties of Functional Weft Knitted Spacer Fabrics. J. Tex. Apparel., 23, 2013.
[70] Chen, C., Du, Z., Yu, W., and Dias, T., Analysis of physical properties and structure design of weft-knitted spacer fabric with high porosity. Tex. Res. J., 88, 59-68, 2018.
[71] Morris, M.A., Thermal insulation of single and multiple layers of fabrics. Tex. Res. J., 25, 766-773, 1955.
[72] Mukhopadhyay, A., Ishtiaque, S.M., and Uttam, D., Impact of structural variations in hollow yarn on heat and moisture transport properties of fabrics. J. Tex. Ins., 102, 700-712, 2011.
[73] Angelova, R.A., Reiners, P., Georgieva, E., Konova, H.P., Pruss, B., and Kyosev, Y., Heat and mass transfer through outerwear clothing for protection from cold: influence of geometrical, structural and mass characteristics of the textile layers. Tex. Res. J., 87, 1060-1070, 2017.
[74] Hearle, J.W., and Morton, W.E., Physical properties of textile fibres. Elsevier, 2008.
[75] Matusiak, M., and Sikorski, K., Influence of the structure of woven fabrics on their thermal insulation properties. Fibres. Tex. East. Eur., 19, 88, 2011.
[76] Oglakcioglu, N., Cay, A., Marmarali, A., Characteristics of knitted structures produced by engineered polyester yarns and their blends in terms of thermal comfort. J. Eng. Fibers. Fabrics., 10, 32–41, 2015.
[77] Majumdar, A., Mukhopadhyay, S., and Yadav, R., Thermal properties of knitted fabrics made from cotton and regenerated bamboo cellulosic fibres. Int. J. Therm. Sci., 49, 2042–2048, 2010.
[78] Ahmad, S., Ahmad, F., Afzal, A., Rasheed, A., Mohsin, M., and Ahmad, N., Effect of weave structure on thermo-physiological properties of cotton fabrics. AUTEX. Res. J., 15, 30-34, 2015.
[79] Ucar, N., and Yilmaz, T., Thermal properties of 1× 1, 2× 2, and 3× 3 rib knit fabrics. Fibres. Tex. East. Eur., 12, 34-38, 2004.
[80] Shen, H., Tu, L., Yan, X., and Sukigara, S., Obtaining the thermal resistance of air enclosed at the interface of multilayer fabrics by simulation. Tex. Res. J., 89, 3178-3188, 2019.
[81] Slater, F.P., and Rees, W.H., The protective value of clothing. J. Tex. Ins. Proc., 37, P132-P153, 1946.
[82] Onofrei, E., Rocha, A.M., and Catarino, A., The influence of knitted fabrics’ structure on the thermal and moisture management properties. J. Eng. Fibers. Fabrics., 6, 10-22, 2011.
[83] Schacher, L., Adolphe, D.C., and Drean, J.Y., Comparison between thermal insulation and thermal properties of classical and microfibres polyester fabrics. Int. J. Cloth. Sci. Tech., 12, 84-95, 2000.
[84] Obendorf, S.K., and Smith, J.P., Heat transfer characteristics of nonwoven insulating materials. Tex. Res. J., 56, 691-696, 1986.
[85] Baxter, S., and Cassie, A.B.D., Thermal Insulating Properties of Clothing. J. Tex. Ins. Trans., 34, T41-T54. 1943.
[86] Morris, G.J., Thermal properties of textile materials. J. Tex. Ins. Trans., 44, T449-T476, 1953.
[87] Arumugam, V., Mishra, R., Militky, J., Davies, L., and Slater, S., Thermal and water vapor transmission through porous warp knitted 3D spacer fabrics for car upholstery applications. J. Tex. Ins., 1-13. 2017.
[88] Yip, J., and Ng, S. P., Study of three-dimensional spacer fabrics: Physical and mechanical properties. J. mat. Proc. Tech., 206, 359-364. 2008.
[89] Abdel-Rehim, Z. S., Saad, M. M., El-Shakankery, M., and Hanafy, I., Textile fabrics as thermal insulators. AUTEX. Res. J., 6, 148-161. 2006.
[90] Mishra, R., Veerakumar, A., and Militky, J., Thermo-physiological properties of 3D spacer knitted fabrics. Int. J. Cloth. Sci. Tech., 28, 328-339. 2016.
[91] Crow, R.M., Heat and moisture transfer in clothing systems. Transfer through materials, a literature review Part 1. Ottawa: ON: Defence Research Establishment, Kong Polytechnic University, 1974.
[92] Rengasamy, R.S., Das, B.R., and Patil, Y.B., Thermo-physiological comfort characteristics of polyester air-jet-textured and cotton-yarn fabrics.  J. Tex. Ins., 100, 507-511. 2009.
[93] Mangat, M.M., and Hes, L., Thermal resistance of denim fabric under dynamic moist conditions and its investigational confirmation. Fibres. Tex. East. Eur., 2014.
[94] Huang, J., Wu, J., and Xu, W., Coupling effects of steady-state heat and water vapor transfer through fabrics. Tex. Res. J., 84, 2157-2165, 2014.
[95] Dias, T., and Delkumburewatte, G. B., The influence of moisture content on the thermal conductivity of a knitted structure. Measur. Sci. Tech., 18, 1304-1314. 2007.
[96] Kubiliene, D., Sankauskaite, A., Abraitienė, A., Krauledas, S., and Barauskas, R., Investigation of thermal properties of ceramic-containing knitted textile materials. Fibres. Tex. East. Eur., 3, 63-66, 2016.
[97] Mao, N., and Russell, S. J., The thermal insulation properties of spacer fabrics with a mechanically integrated wool fiber surface. Tex. Res. J., 77, 914-922, 2007.
[98] Ziaei, M., and Ghane, M., Thermal insulation property of spacer fabrics integrated by ceramic powder impregnated fabrics. J. Indus. Tex., 43, 20-33, 2013.
 [99] ریچارد، آ.، جانسون، و.، ترجمه: حسینعلی، ن.، تحلیل آماری چند متغیری کاربردی، 1378.
[100] Matusiak, M.و and Kowalczyk, S., Thermal-insulation properties of multilayer textile packages. Autex. Res. J., 14, 299-307, 2014.
[101] Bhattacharjee, D., and Kothari, V. K., Heat transfer through woven textiles. Int. J. Heat. Mass. Trans., 52, 2155-2160, 2009.
[102] Matusiak, M., Investigation of the thermal insulation properties of multilayer textiles. Fibres. Tex. East. Eur., 14, 98-102. 2006.
[103] Sybilska, W., and Korycki, R., Analysis of thermal-insulating parameters in two-and three-layer textiles with semi-permeable membranes. Fibres. Tex. East. Eur., 5, 80-87, 2016.
[104] Gilewicz, P., Dominiak, J., Cichocka, A., and Frydrych, I., Change in Structural and Thermal Properties of Textile Fabric Packages Containing Basalt Fibres after Fatigue Bending Loading. Fibres. Tex. East. Eur., 2013.
[105] Kanat, Z.E., and Özdil, N., Application of artificial neural network (ANN) for the prediction of thermal resistance of knitted fabrics at different moisture content. J. Tex. Ins., 109, 1247-1253, 2018.