مروری بر انتقال حرارت در منسوجات بخش اول: مطالعات تجربی

نوع مقاله : مقاله مروری

نویسندگان

1 یزد، دانشگاه یزد، مجتمع فنی و مهندسی، دانشکده مهندسی نساجی

2 عضو هیات علمی دانشکده مهندسی نساجی دانشگاه یزد

چکیده

شناخت خواص حرارتی منسوجات مانند راحتی حرارتی، حفاظت حرارتی و عایق حرارتی، یکی از موضوعات مورد توجه در صنایع می‌باشد. هدایت حرارتی و عایق حرارتی، پارامترهای کلیدی در انتقال حرارت در منسوجات به­شمار می­روند و آن­ها را می­توان با روش‌های مختلف، شامل روش‌های تجربی، حل تحلیلی و عددی ارزیابی کرد. در این میان، روش‌های عددی و تجربی بیشتر مورد توجه قرارگرفته است. تحلیل و شناخت رفتار حرارتی منسوجات با ویژگی‌های هندسی و ساختاری متفاوت با روش‌های تجربی امکان‌پذیر است. موارد تأثیرگذار بر خواص حرارتی شامل مواد سازنده، خواص ساختاری، ظرافت، سطح مقطع، تخلخل، ساختار نخ و خواص آن و همچنین ویژگی‌های ساختاری و فیزیکی پارچه و خواص تکمیلی بر روی آن است. هدف از این مطالعه، مرور پژوهش‌های تجربی انجام شده، جهت تعیین رفتار حرارتی منسوجات است. در بخش اول، روش‌های اندازه‌گیری خواص حرارتی مرور و در ادامه پارامترهای هندسی و ساختاری تأثیرگذار بر خواص حرارتی و معرفی شده توسط محققین، ارائه شده است.
 

کلیدواژه‌ها


عنوان مقاله [English]

Review of Heat Transfer in Textiles, Part 1: Experimental Studies

نویسندگان [English]

  • Neda Dehghan 1
  • Pedram Payvandy 2
1 Department of Textile Engineering, Faculty of Engineering, Yazd University, Yazd, Iran
چکیده [English]

Understanding the thermal properties of textiles, such as thermal comfort, thermal protection, and thermal insulation, is one of the topics of interest in textile industry and clothing. The thermal resistance of textiles is a detrimental parameter in heat transferand it can be obtained by experimental, analytical, or numerical methods. The thermal behavior analysis of textiles that have different geometrical and structural properties is possible by experimental methods. Different parameters affect the thermal properties of fabrics including the type of material, morphological properties, fineness, cross-section, porosity, yarn structure, fabric structural, fabric finishing. The aim of this paper is to review the published experimental results on the thermal behavior of textiles. In this paper (part I), we list the measuring methods of thermal properties and discuss the geometrical and structural parameters affecting the thermal conductivity in textiles.

کلیدواژه‌ها [English]

  • heat transfer
  • Thermal conductivity
  • thermal resistance
[1] Ukponmwan, J.O., The thermal-insulation properties of fabrics. Textile Progress., 24, 1-57, 1993.
[2] دهقان، ن.، پیوندی، پ.، بهینه‌سازی مدل هدایت حرارتی پارچه‌های اسپیسر با استفاده از الگوریتم رقابت استعماری، یازدهمین کنفرانس ملی مهندسی نساجی، دانشگاه گیلان اردیبهشت 1397.
[3] Arumugam, V., Mishra, R., Militky, J., and Salacova, J., Investigation on thermo-physiological and compression characteristics of weft-knitted 3D spacer fabrics. J. Tex. Ins., 108, 1095-1105, 2017.
[4] Prakash, C., Ramakrishnan, G., Effect of blend proportion on thermal behaviour of bamboo knitted fabrics. J. Tex. Ins., 104, 907-913, 2013.
[5] Kadapalayam Chinnasamy, K., Chidambaram, P., Influence of the bamboo/cotton fibre blend proportion on the thermal comfort properties of single jersey knitted fabrics. Fibres. Tex. East. Eur., 2017.
[6] Varshney, R.K., Kothari, V.K. and Dhamija, S., A study on thermophysiological comfort properties of fabrics in relation to constituent fibre fineness and cross-sectional shapes. J. Tex. Ins., 101, 495-505, 2010.
[7] Afzal, A., Ahmad, S., Rasheed, A., Ahmad, F., Iftikhar, F. and Nawab, Y., Influence of fabric parameters on thermal comfort performance of double layer knitted interlock fabrics. Autex. Res. J., 17, 20-26, 2017.
[8] Onal, L., and Yildirim, M., Comfort properties of functional three-dimensional knitted spacer fabrics for home-textile applications. Tex. Res. J., 82, 1751-1764, 2012.
[9] Karaca, E., Kahraman, N., Omeroglu, S. and Becerir, B., Effects of fiber cross sectional shape and weave pattern on thermal comfort properties of polyester woven fabrics. Fibres. Tex. East. Eur., 3, 67-72, 2012.
[10] Bogaty, H., Hollies, N.R. and Harris, M., Some thermal properties of fabrics: part I: The effect of fiber arrangement. Tex. Res. J., 27, 445-449, 1957.
[11] Raja, D., Prakash, C., Gunasekaran, G. and Koushik, C.V., A study on thermal properties of single-jersey knitted fabrics produced from ring and compact folded yarns. J. Tex. Ins., 106, 359-365, 2015.
[12] Karunamoorthy, S., and Das, A., Study on thermal resistance of multilayered fabrics under different compressional loads. J. Tex. Ins., 105, 538-546, 2014.
[13] Shabaridharan, M., and Das, A., Study on thermal and evaporative resistances of multilayered fabric ensembles. J. Tex. Ins., 104, 1025-1041, 2013.
[14] اینکروپرا، ف. پ.، پی دویت، د.، مترجمان، رستمی، ع. الف.، حمایت، ش.، مقدمه ای بر انتقال حرارت. 1367.
[15] سنجل، ی. الف.، قجر، الف. ج.، مترجمان: عالم رجبی، ع. الف.، نصرآزادانی، ع.، یدالله پور، م.، انتقال گرما و جرم، ویرایش چهار. 1393.
[16] Ghosh, A., Mal, P., Majumdar, A., and Banerjee, D., An investigation on air and thermal transmission through knitted fabric structures using the Taguchi method. Autex. Res. J., 17, 152-163, 2017.
[17] Ertekin, M., Ertekin, G., and Marmaralı, A., Analysis of thermal comfort properties of fabrics for protective applications. J. Tex. Ins., 109, 1091-1098, 2018.
 [18] اینکروپرا، ف. پ.، پی دویت، د.، مترجمان، رستمی، ع. الف.، شیرازی، م.، مقدمه‌ای بر انتقال گرما. ویرایش چهار. 1385.
[19] Özdemir, H., Thermal comfort properties of clothing fabrics woven with polyester/cotton blend yarns. Autex. Res. J., 17, 135-141, 2017.
[20] Kothari, V.K., and Bhattacharjee, D., Prediction of thermal resistance of woven fabrics. Part I: Mathematical model. J. Tex. Ins., 99, 421-432, 2008.
[21] Cengel, Y. A., Heat tranfer a practical approach. McGraw-Hill. 1-60, 2003.
[22] Erdumlu, N., and Saricam, C., Investigating the effect of some fabric parameters on the thermal comfort properties of flat knitted acrylic fabrics for winter wear. Tex. Res. J., 87, 1349-1359, 2017.
[23] Oglakcioglu, N., Celik, P., Ute, T.B., Marmarali, A., and Kadoglu, H., Thermal comfort properties of angora rabbit/cotton fiber blended knitted fabrics. Tex. Res. J., 79, 888-894, 2009.
[24] ASTM D 1518-85: Standard test method for thermal transmittance of textile materials, American Society for Testing and Materials, 2003.
[25] Saville, B.P., Comfort, in Physical testing of textiles. Woodhead Publishing Limited: Cambridge, England. 209-243, 1999.
[26] KES-F7 Thermo-Lab-II B, precise and fast Thermal-property measuring instrument. Katotech Ltd: Japan.
[27] Mahanta, N. K., and Abramson, A. R., The dual-mode heat flow meter technique: A versatile method for characterizing thermal conductivity. Int. J. Heat and Mass. Trans., 53, 5581-5586, 2010.
[28] DTC-25. Thermal conductivity meter, TA Instruments: USA, 2014.
[29] ASTM E1530: Standard test method for evaluating the resistance of thermal transmission of materials by the guarded heat flow meter technique. American Society for Testing and Materials.
[30] Hes, L., and Dolezal, I., New method and equipment for measuring thermal properties of textiles, J. Tex. Machin. Society. Japan., 42, T124-T128, 1989.
[31] Standard, B., BS 4745: Determination of the thermal resistance of textiles-Two plate method: Fixed pressure procedure., British Standard Institution, 2005.
[32] Uttam, D., Objective measurement of heat transport through clothing. Int. J. Eng. Res. Develop., 2, 43-47, 2012.
[33] Fayala, F., Alibi, H., Benltoufa, S., and Jemni, A., Neural Network for Predicting Thermal Conductivity of Knit Materials. J. Eng. Fabrics & Fibers, 3, 53-60, 2008.
[34] Zhu, L., Wang, X., Blanchonette, I. and Naebe, M., Thermal comfort properties of bifacial fabrics. Tex. Res. J., 89, 43-51, 2019.
[35] Xiao, X., Hua, T., Wang, J., Li, L., and Au, W., Transfer and mechanical behavior of three-dimensional honeycomb fabric. Tex. Res. J., 85, 1281-1292, 2015.
[36] Yang, Y., and Hu, H., Spacer fabric-based exuding wound dressing–Part I: Structural design, fabrication and property evaluation of spacer fabrics. Tex. Res. J., 87, 1469-1480, 2017.
[37] Zhu, L., Naebe, M., Blanchonette, I., and Wang, X., Heat transfer properties of bifacial fabrics. Tex. Res. J., 87, 2307-2313, 2017.
[38] Shen, H., Xie, K., Shi, H., Yan, X., Tu, L., Xu, Y., and Wang, J., Analysis of heat transfer characteristics in textiles and factors affecting thermal properties by modeling. Tex. Res. J., 2019.
[39] Abro, Z.A., Chen, N., Yifan, Z., Cheng-Yu, H., Abassi, A.M.R., Simair, A.A., Ahmed, R. and Hussain, A., Investigation on Thermal Comfort Characteristics of Regenerated Bamboo and Cotton Woven Structured Fabrics. Autex. Res. J., 18, 323-329, 2018.
[40] Korycki, R., and Więzowska, A., Relation between basic structural parameters of knitted fur fabrics and their heat transmission resistance. Fibres. Tex. East. Eur., 16, 68-75, 2008.
[41] Matusiak, M., Modelling the thermal resistance of woven fabrics. J. Tex. Ins., 104, 426-437. 2013.
[42] Özkan, E.T., and Meriç, B., Thermophysiological comfort properties of different knitted fabrics used in cycling clothes. Tex. Res. J., 85, 62-70, 2015.
[43] Angelova, R.A., Kyosov, M., and Stankov, P., Numerical investigation of the heat transfer through woven textiles by the jet system theory. J. Tex. Ins., 110, 386-395, 2019.
[44] Mangat, M.M., Hes, L., and Bajzík, V., Thermal resistance models of selected fabrics in wet state and their experimental verification. Tex. Res. J., 85, 200-210, 2015.
[45] Jamshaid, H., Mishra, R., and Militky, J., Thermal and mechanical characterization of novel basalt woven hybrid structures. J. Tex. Ins., 107, 462-471, 2016.
[46] Mahbub, R.F., Wang, L., Arnold, L., Kaneslingam, S., and Padhye, R., Thermal comfort properties of Kevlar and Kevlar/wool fabrics. Tex. Res. J., 84, 2094-2102, 2014.
[47] Majumdar, A., Modelling of thermal conductivity of knitted fabrics made of cotton–bamboo yarns using artificial neural network. J. Tex. Ins., 102, 752-762, 2011.
[48] Ramakrishnan, G., Umapathy, P., and Prakash, C., Comfort properties of bamboo/cotton blended knitted fabrics produced from rotor spun yarns. J. Tex. Ins., 106, 1371-1376, 2015.
[49] Jankoska, M., and Demboski, G., Influence of structure variation and finishing on woven fabric thermal properties. Fibres. Tex. East. Eur., 2018.
[50] Oğlakcioğlu, N., and Marmarali, A., Thermal comfort properties of some knitted structures. Fibres. Tex. East. Eur., 15, 64-65, 2007.
[51] Li, Y., Zhu, Q., and Yeung, K.W., Influence of thickness and porosity on coupled heat and liquid moisture transfer in porous textiles. Tex. Res. J., 72, 435-446, 2002.
[52] Nazir, M.U., Shaker, K., Nawab, Y., Fazal, M.Z., Khan, M.I., and Umair, M., Investigating the effect of material and weave design on comfort properties of bilayer-woven fabrics. J. Tex. Ins., 108, 1319-1326, 2017.
[53] Kakvan, A., Shaikhzadeh Najar, S., and Psikuta, A., Study on effect of blend ratio on thermal comfort properties of cotton/nylon-blended fabrics with high-performance Kermel fibre. J. Tex. Ins., 106, 674-682, 2015.
[54] Kaleeswaran, P., and Kothari, V.K., Thermal resistance of nonwoven waddings. J. Tex. Ins., 108, 1657-1661, 2017.
[55] Zheng, Z., Wang, H., Zhao, X., and Zhang, N., Simulation of the effects of structural parameters of glass fiber fabric on the thermal insulation property. Tex. Res. J., 88, 1954-1964, 2018.
[56] Gnanauthayan, G., Rengasamy, R.S., and Kothari, V.K., Heat insulation characteristics of high bulk nonwovens. J. Tex. Ins., 108, 2173-2179, 2017.
[57] Martin, J.R., and Lamb, G.E., Measurement of thermal conductivity of nonwovens using a dynamic method. Tex. Res. J., 57, 721-727, 1987.
[58] Jhanji, Y., Gupta, D., and Kothari, V.K., Effect of loop length and filament fineness on thermo-physiological properties of polyester-cotton plated knit structures. J. Tex. Ins., 106, 383-394, 2015.
[59] Chidambaram, P., Govind, R., and Venkataraman, K.C., The effect of loop length and yarn linear density on the thermal properties of bamboo knitted fabric. Autex. Res. J., 11, 102-105, 2011.
[60] Senthil Kumar, B., and Ramachandran, T., Influence of Knitting Process Parameters on the Thermal Comfort Properties of Eri Silk Knitted Fabrics. Fibres. Tex. East. Eur., 2018.
[61] Kaynak, H.K., and Babaarslan, O., Effects of filament linear density on the comfort related properties of polyester knitted fabrics. Fibres. Tex. East. Eur., 2016.
[62] Jhanji, Y., Gupta, D., and Kothari, V.K., Thermal and mass transport properties of polyester–cotton plated fabrics in relation to back layer fibre profiles and face layer yarn types. J. Tex. Ins., 109, 669-676, 2018.
[63] Bakhtiari, M., Hasani, H., Zarrebini, M., and Hassanzadeh, S., Investigation of the thermal comfort properties of knitted fabric produced from Estabragh (Milkweed)/cotton-blended yarns. J. Tex. Ins., 106, 47-56, 2015.
[64] Celep, G., and Yüksekkaya, M.E., Comparison of thermal comfort properties of single jersey fabrics produced by hollow yarns with different hollowness ratio. J. Tex. Ins., 108, 165-171, 2017.
[65] Dal, V., Şimşek, R., Hes, L., Akçagün, E., and Yilmaz, A., Investigation of thermal comfort properties of zinc oxide coated woven cotton fabric. J. Tex. Ins., 108, 337-340, 2017.
[66] Hes, L., and de Araujo, M., Simulation of the effect of air gaps between the skin and a wet fabric on resulting cooling flow. Tex. Res. J., 80, 1488-1497, 2010.
[67] Du, N., Fan, J., and Wu, H., Optimum porosity of fibrous porous materials for thermal insulation. Fibers & Polymers, 9, 27-33, 2008.
[68] Mangat, M.M., Militký, J., and Hes, L., Thermal resistance of cotton denim fabric under various moisture conditions. Compar. Wet. Milling. Action. Fibrous. Solid. Mat., 16, 35, 2012.
[69] Crina, B., Blaga, M., Luminita, V., and Mishra, R., Comfort Properties of Functional Weft Knitted Spacer Fabrics. J. Tex. Apparel., 23, 2013.
[70] Chen, C., Du, Z., Yu, W., and Dias, T., Analysis of physical properties and structure design of weft-knitted spacer fabric with high porosity. Tex. Res. J., 88, 59-68, 2018.
[71] Morris, M.A., Thermal insulation of single and multiple layers of fabrics. Tex. Res. J., 25, 766-773, 1955.
[72] Mukhopadhyay, A., Ishtiaque, S.M., and Uttam, D., Impact of structural variations in hollow yarn on heat and moisture transport properties of fabrics. J. Tex. Ins., 102, 700-712, 2011.
[73] Angelova, R.A., Reiners, P., Georgieva, E., Konova, H.P., Pruss, B., and Kyosev, Y., Heat and mass transfer through outerwear clothing for protection from cold: influence of geometrical, structural and mass characteristics of the textile layers. Tex. Res. J., 87, 1060-1070, 2017.
[74] Hearle, J.W., and Morton, W.E., Physical properties of textile fibres. Elsevier, 2008.
[75] Matusiak, M., and Sikorski, K., Influence of the structure of woven fabrics on their thermal insulation properties. Fibres. Tex. East. Eur., 19, 88, 2011.
[76] Oglakcioglu, N., Cay, A., Marmarali, A., Characteristics of knitted structures produced by engineered polyester yarns and their blends in terms of thermal comfort. J. Eng. Fibers. Fabrics., 10, 32–41, 2015.
[77] Majumdar, A., Mukhopadhyay, S., and Yadav, R., Thermal properties of knitted fabrics made from cotton and regenerated bamboo cellulosic fibres. Int. J. Therm. Sci., 49, 2042–2048, 2010.
[78] Ahmad, S., Ahmad, F., Afzal, A., Rasheed, A., Mohsin, M., and Ahmad, N., Effect of weave structure on thermo-physiological properties of cotton fabrics. AUTEX. Res. J., 15, 30-34, 2015.
[79] Ucar, N., and Yilmaz, T., Thermal properties of 1× 1, 2× 2, and 3× 3 rib knit fabrics. Fibres. Tex. East. Eur., 12, 34-38, 2004.
[80] Shen, H., Tu, L., Yan, X., and Sukigara, S., Obtaining the thermal resistance of air enclosed at the interface of multilayer fabrics by simulation. Tex. Res. J., 89, 3178-3188, 2019.
[81] Slater, F.P., and Rees, W.H., The protective value of clothing. J. Tex. Ins. Proc., 37, P132-P153, 1946.
[82] Onofrei, E., Rocha, A.M., and Catarino, A., The influence of knitted fabrics’ structure on the thermal and moisture management properties. J. Eng. Fibers. Fabrics., 6, 10-22, 2011.
[83] Schacher, L., Adolphe, D.C., and Drean, J.Y., Comparison between thermal insulation and thermal properties of classical and microfibres polyester fabrics. Int. J. Cloth. Sci. Tech., 12, 84-95, 2000.
[84] Obendorf, S.K., and Smith, J.P., Heat transfer characteristics of nonwoven insulating materials. Tex. Res. J., 56, 691-696, 1986.
[85] Baxter, S., and Cassie, A.B.D., Thermal Insulating Properties of Clothing. J. Tex. Ins. Trans., 34, T41-T54. 1943.
[86] Morris, G.J., Thermal properties of textile materials. J. Tex. Ins. Trans., 44, T449-T476, 1953.
[87] Arumugam, V., Mishra, R., Militky, J., Davies, L., and Slater, S., Thermal and water vapor transmission through porous warp knitted 3D spacer fabrics for car upholstery applications. J. Tex. Ins., 1-13. 2017.
[88] Yip, J., and Ng, S. P., Study of three-dimensional spacer fabrics: Physical and mechanical properties. J. mat. Proc. Tech., 206, 359-364. 2008.
[89] Abdel-Rehim, Z. S., Saad, M. M., El-Shakankery, M., and Hanafy, I., Textile fabrics as thermal insulators. AUTEX. Res. J., 6, 148-161. 2006.
[90] Mishra, R., Veerakumar, A., and Militky, J., Thermo-physiological properties of 3D spacer knitted fabrics. Int. J. Cloth. Sci. Tech., 28, 328-339. 2016.
[91] Crow, R.M., Heat and moisture transfer in clothing systems. Transfer through materials, a literature review Part 1. Ottawa: ON: Defence Research Establishment, Kong Polytechnic University, 1974.
[92] Rengasamy, R.S., Das, B.R., and Patil, Y.B., Thermo-physiological comfort characteristics of polyester air-jet-textured and cotton-yarn fabrics.  J. Tex. Ins., 100, 507-511. 2009.
[93] Mangat, M.M., and Hes, L., Thermal resistance of denim fabric under dynamic moist conditions and its investigational confirmation. Fibres. Tex. East. Eur., 2014.
[94] Huang, J., Wu, J., and Xu, W., Coupling effects of steady-state heat and water vapor transfer through fabrics. Tex. Res. J., 84, 2157-2165, 2014.
[95] Dias, T., and Delkumburewatte, G. B., The influence of moisture content on the thermal conductivity of a knitted structure. Measur. Sci. Tech., 18, 1304-1314. 2007.
[96] Kubiliene, D., Sankauskaite, A., Abraitienė, A., Krauledas, S., and Barauskas, R., Investigation of thermal properties of ceramic-containing knitted textile materials. Fibres. Tex. East. Eur., 3, 63-66, 2016.
[97] Mao, N., and Russell, S. J., The thermal insulation properties of spacer fabrics with a mechanically integrated wool fiber surface. Tex. Res. J., 77, 914-922, 2007.
[98] Ziaei, M., and Ghane, M., Thermal insulation property of spacer fabrics integrated by ceramic powder impregnated fabrics. J. Indus. Tex., 43, 20-33, 2013.
 [99] ریچارد، آ.، جانسون، و.، ترجمه: حسینعلی، ن.، تحلیل آماری چند متغیری کاربردی، 1378.
[100] Matusiak, M.و and Kowalczyk, S., Thermal-insulation properties of multilayer textile packages. Autex. Res. J., 14, 299-307, 2014.
[101] Bhattacharjee, D., and Kothari, V. K., Heat transfer through woven textiles. Int. J. Heat. Mass. Trans., 52, 2155-2160, 2009.
[102] Matusiak, M., Investigation of the thermal insulation properties of multilayer textiles. Fibres. Tex. East. Eur., 14, 98-102. 2006.
[103] Sybilska, W., and Korycki, R., Analysis of thermal-insulating parameters in two-and three-layer textiles with semi-permeable membranes. Fibres. Tex. East. Eur., 5, 80-87, 2016.
[104] Gilewicz, P., Dominiak, J., Cichocka, A., and Frydrych, I., Change in Structural and Thermal Properties of Textile Fabric Packages Containing Basalt Fibres after Fatigue Bending Loading. Fibres. Tex. East. Eur., 2013.
[105] Kanat, Z.E., and Özdil, N., Application of artificial neural network (ANN) for the prediction of thermal resistance of knitted fabrics at different moisture content. J. Tex. Ins., 109, 1247-1253, 2018.