بررسی خواص حرارتی، مکانیکی و الکتریکی کامپوزیت‌های اپوکسی پر‌شده با نانو لوله‌های کربنی اصلاح شده

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی نساجی، واحد یزد، دانشگاه آزاد اسلامی، یزد، ایران

2 دانشکده مهندسی نساجی، واحد قائمشهر، دانشگاه آزاد اسلامی، قائمشهر، ایران

چکیده

یکی از مشکلات استفاده از کامپوزیت‌های اپوکسی برهمکنش ضعیف میان نانو پرکننده‌های کربنی و رزین اپوکسی می‌باشد. در این پژوهش، تاثیر عملیات سطحی کرونا بر خواص کامپوزیت‌های اپوکسی تقویت شده با نانو لوله‌های کربنی مورد بررسی قرار گرفته است. ساختار شیمیایی سطحی و شکل‌شناسی نانوکامپوزیت‌های اپوکسی با کمک طیف‌سنجی مادون قرمز و میکروسکوپ الکترونی روبشی مورد بررسی قرار گرفت. خواص حرارتی، مکانیکی، ویسکوالاستیک و رسانش نانوکامپوزیت‌ها نیز بررسی شد. نتایج بررسی نشان داد که اصلاح سطحی نانو لوله‌های کربنی به کمک فرآیند کرونا از تجمع نانو لوله‌های کربنی جلوگیری کرده و توزیع آن‌ها در ماتریس اپوکسی را بهبود می‌دهد. این امر می‌تواند منجر به افزایش برهم‌کنش‌های بین سطحی، بهبود پایداری حرارتی، خواص مکانیکی و رسانش الکتریکی نانوکامپوزیت شود.

کلیدواژه‌ها


[1] Dillingham, R. G., Oakley, B. R., Dan-Jumbo, E., Baldwin, J., Keller, R., Magato, J., Surface treatment and adhesive bonding techniques for repair of high-temperature composite materials, J. Compos. Mater., 48, 853-859, 2014.
[2] Fiore, V., Scalici, T., Nicoletti, F., Vitale, G., Prestipino, M., Valenza, A., A new eco-friendly chemical treatment of natural fibres: Effect of sodium bicarbonate on properties of sisal fibre and its epoxy composites, Compos. Part B Eng., 85, 150-160, 2016.
[3] Zhao, Y., Chen, Z. K., Liu, Y., Xiao, H. M., Feng, Q. P., Fu, S. Y., Simultaneously enhanced cryogenic tensile strength and fracture toughness of epoxy resins by carboxylic nitrile-butadiene nano-rubber, Compos. Part A Appl. Sci. Manuf., 55, 178-187, 2013.
[4] Chatterjee, S., Wang, J. W., Kuo, W. S., Tai, N. H., Salzmann, C., Li, W. L., Hollertz, R., Nuesch F. A, Chu, B. T. T., Mechanical reinforcement and thermal conductivity in expanded graphene nanoplatelets reinforced epoxy composites, Chem. Phys. Lett., 531, 6-10, 2012.
[5] Qi, B., Lu, S. R., Xiao, X. E., Pan, L. L., Tan, F. Z., Yu, J. H., Enhanced thermal and mechanical properties of epoxy composites by mixing thermotropic liquid crystalline epoxy grafted graphene oxide, Express Polym. Lett., 8, 467-479, 2014.
[6] Li, Y., Pan, D., Chen, S., Wang, Q., Pan, G., Wang, T., In situ polymerization and mechanical, thermal properties of polyurethane/graphene oxide/epoxy nanocomposites, Mater. Design, 47, 850-856, 2013.
 [7] Liu, R., Chen, Y., Ma, Q., Luo, J., Wei, W., Liu, X., Noncovalent functionalization of carbon nanotube using poly (vinylcarbazole)‐based compatibilizer for reinforcement and conductivity improvement in epoxy composite, J. Appl. Polym. Sci., 134, 45022, 2017.
[8] Prolongo, S. G., Gude, M. R., Ureña, A, Synthesis and characterisation of epoxy resins reinforced with carbon nanotubes and nanofibers, J. Nanosci. Nanotech., 9, 6181-6187, 2009.
[9] Rafique, I., Kausar, A., Muhammad, B., Epoxy resin composite reinforced with carbon fiber and inorganic filler: Overview on preparation and properties, Polym.-Plastics Technol. Eng., 55, 1653-1672, 2016.
[10] Fathi, B., Esfandeh, M., Soltani, A. K., Taghavian, H., Effect of corona discharge treatment on dynamic mechanical properties of unsaturated polyester/carbon fiber pultruded composites, Polym.-Plastics Technol. Eng., 53, 162-166, 2014.
[11] Ghosh, P. K., Kumar, K., Chaudhary, N., Influence of ultrasonic dual mixing on thermal and tensile properties of MWCNTs-epoxy composite, Compos. Part B Eng., 77, 139-144, 2015.
[12] Yu, S. J., Hwang, E. B., Lee, E. B., Jeong, Y. G., Microstructures and electrical properties of composite films based on carbon nanotube and para-aramid containing cyano side group, Fiber. Polym., 18, 342-348, 2017.
[13] Yuan, S., Zheng, Y., Chua, C. K., Yan, Q., Zhou, K., Electrical and thermal conductivities of MWCNT/polymer composites fabricated by selective laser sintering, Compos. Part A Appl. Sci. Manuf., 105, 203-213, 2018.
[14] Upasani, P., Sreekumar, T. V., Gaikar, V. G., Jha, N., Preparation of ZnO/MWCNT/PP composite film and its application as multifunctional protective film, Polym. Compos., 39, 157-170, 2018.
[15] Mallick, A., Mishra, P., Swain, S. K., The Effect of Functionalized MWCNT on Mechanical and Electrical Properties of PMMA Nanocomposites, In Nanoelectronic Materials and Devices, Springer, Singapore, pp. 1-9, 2018.
[16] Mirmehdi, S., Hein, P. R. G., de Luca Sarantópoulos, C. I. G., Dias, M. V., Tonoli, G. H. D., Cellulose nanofibrils/nanoclay hybrid composite as a paper coating: Effects of spray time, nanoclay content and corona discharge on barrier and mechanical properties of the coated papers, Food Packag. Shelf Life, 15, 87-94, 2018.
[17] Ovaska, S. S., Geydt, P., Rinkunas, R., Lozovski, T., Maldzius, R., Sidaravicius, J., Osterberg, M., Johansson, L. S., Backfolk, K., Corona treatment of filled dual-polymer dispersion coatings: Surface properties and grease resistance, Polym. Polym. Compos., 25, 257-266, 2017.
[18] Bahramian, N., Atai, M., Naimi-Jamal, M. R., Ultra-high-molecular-weight polyethylene fiber reinforced dental composites: Effect of fiber surface treatment on mechanical properties of the composites, Dental Mater., 31, 1022-1029, 2015.
[19] Popelka, A., Khanam, P. N., AlMaadeed, M. A., Surface modification of polyethylene/graphene composite using corona discharge, J. Phys. D Appl. Phys., 51, 105302, 2018.
[20] Gantayat, S., Prusty, G., Rout, D. R., & Swain, S. K., Expanded graphite as a filler for epoxy matrix composites to improve their thermal, mechanical and electrical properties, New Carbon Mater., 30, 432-437, 2015.
[21] Schröder, A., Klüppel, M., Schuster, R. H., Characterisation of Surface Activity of Carbon Black and its Relation to Polymer‐Filler Interaction, Macromolecul. Mater. Eng., 292, 885-916, 2007.
[22] Kowalczyk, D., Kamińska, I., Effect of corona discharge on the stability of the adhesion of thin silicone-organic coating to polyamide fiber surface made by the sol–gel method, J. Coating. Technol. Res., 14, 1115-1125, 2017.
[23] Turcsanyi, B., Pukanszky, B., Tüdõs, F., Composition dependence of tensile yield stress in filled polymers, J. Mater. Sci. Lett., 7, 160-162, 1988.
[24] Ray, S. S., In Environmentally friendly polymer nanocomposites: types, processing and properties, Elsevier, 312-344, 2013.