بررسی خواص حرارتی، مکانیکی و الکتریکی کامپوزیت‌های اپوکسی پر‌شده با نانو لوله‌های کربنی اصلاح شده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی نساجی، واحد یزد، دانشگاه آزاد اسلامی، یزد، ایران

2 دانشکده مهندسی نساجی، واحد قائمشهر، دانشگاه آزاد اسلامی، قائمشهر، ایران

چکیده

یکی از مشکلات استفاده از کامپوزیت‌های اپوکسی برهمکنش ضعیف میان نانو پرکننده‌های کربنی و رزین اپوکسی می‌باشد. در این پژوهش، تاثیر عملیات سطحی کرونا بر خواص کامپوزیت‌های اپوکسی تقویت شده با نانو لوله‌های کربنی مورد بررسی قرار گرفته است. ساختار شیمیایی سطحی و شکل‌شناسی نانوکامپوزیت‌های اپوکسی با کمک طیف‌سنجی مادون قرمز و میکروسکوپ الکترونی روبشی مورد بررسی قرار گرفت. خواص حرارتی، مکانیکی، ویسکوالاستیک و رسانش نانوکامپوزیت‌ها نیز بررسی شد. نتایج بررسی نشان داد که اصلاح سطحی نانو لوله‌های کربنی به کمک فرآیند کرونا از تجمع نانو لوله‌های کربنی جلوگیری کرده و توزیع آن‌ها در ماتریس اپوکسی را بهبود می‌دهد. این امر می‌تواند منجر به افزایش برهم‌کنش‌های بین سطحی، بهبود پایداری حرارتی، خواص مکانیکی و رسانش الکتریکی نانوکامپوزیت شود.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of thermal, mechanical and electrical properties of modified carbon nanotubes reinforced epoxy composites

نویسندگان [English]

  • Hamid Reza Gholshan Tafti 1
  • Mohammad Mirjalili 1
  • Peiman Valipour 2
1 Department of Textile Engineering Yazd Branch, Islamic Azad University Yazd, Iran
2 Department of Textile and Apparel Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
چکیده [English]

Poor interaction between fillers and epoxy matrix is one of the major limitations to developing epoxy composites usage. In this study, effect of corona process on carbon nanotubes reinforced epoxy composite properties was evaluated. The structure and morphology of epoxy composites has been examined by scanning electron microscopy (SEM) and its chemical structure has been elucidated by Fourier transform infrared spectroscopy (FT-IR). Thermal, mechanical and electrical properties of the prepared composites were also assessed. To analyze the relationship between the interfacial interactions in the nanocomposites and tensile performance, a theoretical model germane to the mechanical behaviors of the nanocomposite was applied. According to the results, it was found that the corona modification of carbon nanotubes resulted in breaking of fillers agglomerates and improved their dispersion. The mechanical properties and thermal stability of modified samples were improved with respect to unmodified ones. Moreover, the prepared epoxy composite possessed excellent electrical conductivity.

کلیدواژه‌ها [English]

  • corona process
  • carbon nanotubes
  • surface interaction
  • epoxy
[1] Dillingham, R. G., Oakley, B. R., Dan-Jumbo, E., Baldwin, J., Keller, R., Magato, J., Surface treatment and adhesive bonding techniques for repair of high-temperature composite materials, J. Compos. Mater., 48, 853-859, 2014.
[2] Fiore, V., Scalici, T., Nicoletti, F., Vitale, G., Prestipino, M., Valenza, A., A new eco-friendly chemical treatment of natural fibres: Effect of sodium bicarbonate on properties of sisal fibre and its epoxy composites, Compos. Part B Eng., 85, 150-160, 2016.
[3] Zhao, Y., Chen, Z. K., Liu, Y., Xiao, H. M., Feng, Q. P., Fu, S. Y., Simultaneously enhanced cryogenic tensile strength and fracture toughness of epoxy resins by carboxylic nitrile-butadiene nano-rubber, Compos. Part A Appl. Sci. Manuf., 55, 178-187, 2013.
[4] Chatterjee, S., Wang, J. W., Kuo, W. S., Tai, N. H., Salzmann, C., Li, W. L., Hollertz, R., Nuesch F. A, Chu, B. T. T., Mechanical reinforcement and thermal conductivity in expanded graphene nanoplatelets reinforced epoxy composites, Chem. Phys. Lett., 531, 6-10, 2012.
[5] Qi, B., Lu, S. R., Xiao, X. E., Pan, L. L., Tan, F. Z., Yu, J. H., Enhanced thermal and mechanical properties of epoxy composites by mixing thermotropic liquid crystalline epoxy grafted graphene oxide, Express Polym. Lett., 8, 467-479, 2014.
[6] Li, Y., Pan, D., Chen, S., Wang, Q., Pan, G., Wang, T., In situ polymerization and mechanical, thermal properties of polyurethane/graphene oxide/epoxy nanocomposites, Mater. Design, 47, 850-856, 2013.
 [7] Liu, R., Chen, Y., Ma, Q., Luo, J., Wei, W., Liu, X., Noncovalent functionalization of carbon nanotube using poly (vinylcarbazole)‐based compatibilizer for reinforcement and conductivity improvement in epoxy composite, J. Appl. Polym. Sci., 134, 45022, 2017.
[8] Prolongo, S. G., Gude, M. R., Ureña, A, Synthesis and characterisation of epoxy resins reinforced with carbon nanotubes and nanofibers, J. Nanosci. Nanotech., 9, 6181-6187, 2009.
[9] Rafique, I., Kausar, A., Muhammad, B., Epoxy resin composite reinforced with carbon fiber and inorganic filler: Overview on preparation and properties, Polym.-Plastics Technol. Eng., 55, 1653-1672, 2016.
[10] Fathi, B., Esfandeh, M., Soltani, A. K., Taghavian, H., Effect of corona discharge treatment on dynamic mechanical properties of unsaturated polyester/carbon fiber pultruded composites, Polym.-Plastics Technol. Eng., 53, 162-166, 2014.
[11] Ghosh, P. K., Kumar, K., Chaudhary, N., Influence of ultrasonic dual mixing on thermal and tensile properties of MWCNTs-epoxy composite, Compos. Part B Eng., 77, 139-144, 2015.
[12] Yu, S. J., Hwang, E. B., Lee, E. B., Jeong, Y. G., Microstructures and electrical properties of composite films based on carbon nanotube and para-aramid containing cyano side group, Fiber. Polym., 18, 342-348, 2017.
[13] Yuan, S., Zheng, Y., Chua, C. K., Yan, Q., Zhou, K., Electrical and thermal conductivities of MWCNT/polymer composites fabricated by selective laser sintering, Compos. Part A Appl. Sci. Manuf., 105, 203-213, 2018.
[14] Upasani, P., Sreekumar, T. V., Gaikar, V. G., Jha, N., Preparation of ZnO/MWCNT/PP composite film and its application as multifunctional protective film, Polym. Compos., 39, 157-170, 2018.
[15] Mallick, A., Mishra, P., Swain, S. K., The Effect of Functionalized MWCNT on Mechanical and Electrical Properties of PMMA Nanocomposites, In Nanoelectronic Materials and Devices, Springer, Singapore, pp. 1-9, 2018.
[16] Mirmehdi, S., Hein, P. R. G., de Luca Sarantópoulos, C. I. G., Dias, M. V., Tonoli, G. H. D., Cellulose nanofibrils/nanoclay hybrid composite as a paper coating: Effects of spray time, nanoclay content and corona discharge on barrier and mechanical properties of the coated papers, Food Packag. Shelf Life, 15, 87-94, 2018.
[17] Ovaska, S. S., Geydt, P., Rinkunas, R., Lozovski, T., Maldzius, R., Sidaravicius, J., Osterberg, M., Johansson, L. S., Backfolk, K., Corona treatment of filled dual-polymer dispersion coatings: Surface properties and grease resistance, Polym. Polym. Compos., 25, 257-266, 2017.
[18] Bahramian, N., Atai, M., Naimi-Jamal, M. R., Ultra-high-molecular-weight polyethylene fiber reinforced dental composites: Effect of fiber surface treatment on mechanical properties of the composites, Dental Mater., 31, 1022-1029, 2015.
[19] Popelka, A., Khanam, P. N., AlMaadeed, M. A., Surface modification of polyethylene/graphene composite using corona discharge, J. Phys. D Appl. Phys., 51, 105302, 2018.
[20] Gantayat, S., Prusty, G., Rout, D. R., & Swain, S. K., Expanded graphite as a filler for epoxy matrix composites to improve their thermal, mechanical and electrical properties, New Carbon Mater., 30, 432-437, 2015.
[21] Schröder, A., Klüppel, M., Schuster, R. H., Characterisation of Surface Activity of Carbon Black and its Relation to Polymer‐Filler Interaction, Macromolecul. Mater. Eng., 292, 885-916, 2007.
[22] Kowalczyk, D., Kamińska, I., Effect of corona discharge on the stability of the adhesion of thin silicone-organic coating to polyamide fiber surface made by the sol–gel method, J. Coating. Technol. Res., 14, 1115-1125, 2017.
[23] Turcsanyi, B., Pukanszky, B., Tüdõs, F., Composition dependence of tensile yield stress in filled polymers, J. Mater. Sci. Lett., 7, 160-162, 1988.
[24] Ray, S. S., In Environmentally friendly polymer nanocomposites: types, processing and properties, Elsevier, 312-344, 2013.