داربست های نانوالیافی ساخته شده به روش الکتروریسی برای بازسازی عروق آسیب دیده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 فارغ التحصیل کارشناسی ارشد، دانشکده مهندسی پزشکی، دانشگاه صنعتی امیرکبیر (پلی تکنیک تهران).

2 دانشجوی دکترا، دانشکده مهندسی پزشکی، دانشگاه صنعتی امیرکبیر (پلی تکنیک تهران).

3 استادیار، دانشکده مهندسی نساجی، دانشگاه امیر کبیر (پلی تکنیک تهران).

4 استادیار، دانشکده مهندسی پزشکی، دانشگاه صنعتی امیرکبیر (پلی تکنیک تهران)، تهران، ایران

چکیده

تقاضای روزافزونی برای پیوند‌های عروقی مهندسی‌بافت‌شده با اثر بخشی طولانی ‌مدت جهت جایگزینی یا بای‌پس عروق آسیب‌دیده در بیماری‌های مختلف قلبی و عروقی وجود دارد. عروق مهندسی‌بافت‌شده ایده‌آل باید زیست‌سازگار، خون‌سازگار، و مقاوم در برابر اتساع آنوریسم بوده و همچنین به آسانی قابل کاشت در بدن باشند. حوزه‌ی مهندسی‌بافت عروق فرصتی را برای طراحی و ساخت پیوندهای مصنوعی ایده‌ال فراهم می‌کند و تاکنون محققان این عرصه، انواع روش‌ها و مواد را به این منظور مورد مطالعه قرار داده‌اند. از جمله تحقیقات انجام شده می‌توان به ساخت داربست‌هایی از جنس بافت طبیعی سلول-زدایی‌شده یا بیوپلیمرها و پلیمرهای مصنوعی زیست‌تخریب‌پذیر برای ساخت پیوند‌های عروقی مهندسی بافت‌شده اشاره نمود. با این‌ حال، هنوز چالش‌هایی نظیر ‌‌عدم توانایی داربست‌ها در تقلید خواص مکانیکی بافت طبیعی و توانایی باز بودن طولانی مدت و همچنین رشد کافی بافت جدید درون داربست‌ها جهت تضمین عملکرد مناسب در داخل بدن، پیش ‌روی محققان است. الکتروریسی، روشی متداول برای تولید داربست‌های مهندسی‌بافت است که پتانسیل مناسبی برای حل این مشکلات دارد. در این مقاله مروری، مطالعات انجام شده بر روی ساخت داربست‌های عروقی الکتروریسی‌شده بررسی خواهند شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Electrospun Nanofibrous Scaffolds for Regeneration of Diseased Vessels

نویسندگان [English]

  • Sahar Jafari 1
  • Davoud Sadeghi 2
  • Maryam Yousefzadeh 3
  • Atefeh Solouk 4
1 Department of Biomedical Engineering Amirkabir University of Technology
2 Department of Biomedical Engineering Amirkabir University of Technology
3 yousefzadeh@aut.ac.ir
4 Assistant Professor, Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
چکیده [English]

There is an increasing demand for tissue-engineered vascular grafts (TEVGs) with long-term effectiveness
in order to replace or bypass the diseased vessels. Ideal TEVGs should be biocompatible, bloodcompatible
and have resistance against aneurysm dilation as well as being easily implantable in the
body. Tissue engineering field provides an opportunity for designing and fabrication of ideal synthetic
grafts, and so far, researchers have studied several materials and methods for this aim. For example,
some TEVGs have been made from decellularized natural tissues, biopolymers, and biodegradable
synthetic polymers. However, the researchers still encounter some challenges including true mimicking
the mechanical properties of natural tissues and enough neo-tissue ingrowth. Electrospinning is a
conventional technique that has a great potential to solve these problems. In this paper, the performed
studies on the fabrication of electrospun vascular scaffolds have been reviewed.

کلیدواژه‌ها [English]

  • vascular graft
  • Tissue engineering
  • Electrospinning
  • vascular scaffolds
1. Mensah G.A., et al., Comparable estimates of mortality and trends for cardiovascular diseases including congenital heart disease in 21 world regions in 1990 and 2010: The global burden of diseases, injuries and risk factors study, J. Am. College Cardiolog., 61, 10, 2013.
2. Dolgin E., Taking tissue engineering to heart, Nature Medicine, 17, 1032-1035, 2011,
3. Gong Z. and Niklason L.E., Blood vessels engineered from human cells, Trends Cardiovas. Med., 16, 153-156, 2006.
4. Bouten C., et al., Substrates for cardiovascular tissue engineering, Adv. Drug Deliv. Rev., 63, 221-241, 2011.
5. Wise S.G., et al., A multilayered synthetic human elastin/polycaprolactone hybrid vascular graft with tailored mechanical properties, Acta Biomater., 7, 295-303, 2011.
6. Veith F.J., et al., Preoperative saphenous venography in arterial reconstructive surgery of the lower extremity, Surgery,
85, 253-256, 1979.
7. McKenna K.A., et al., Mechanical property characterization of electrospun recombinant human tropoelastin for vascular
graft biomaterials, Acta Biomater., 8, 225-233, 2012.
8. Steinhoff G., et al., Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits in vivo restoration of valve tissue, Circulation, 102, Iii-50-Iii-55, 2000.
9. Dahl S.L., et al., Readily available tissue-engineered vascular grafts, Sci. Translat. Med., 3, 68ra9-68ra9, 2011.
10. De bakey M.E., et al., The fate of Dacron vascular grafts, Archives of Surgery, 89, 755-782,1964.
11. Ratcliffe A., Tissue engineering of vascular grafts, Matrix Biol., 19, 353-357, 2000.
12. McClure M., et al., Bioengineered vascular grafts: Improving vascular tissue engineering through scaffold design, J. Drug Deliv. Sci. Tec., 21, 211-227, 2011.
13. Shadwick R.E., Mechanical design in arteries, J. Experiment. Biolog., 202, 3305-3313, 1999.
14. Krawiec J.T. and Vorp D.A., Adult stem cell-based tissue engineered blood vessels: A review, Biomaterials, 33, 3388-
3400, 2012. 
15. Barnes C.P., et al., Nanofiber technology: Designing the next generation of tissue engineering scaffolds, Adv. Drug Deliv. Rev., 59, 1413-1433, 2007.
16. Greenwald S. and C. Berry, Improving vascular grafts: The importance of mechanical and haemodynamic properties, J. Patholog., 190, 292-299, 2000.
17. Bhardwaj N. and Kundu S.C., Electrospinning: A fascinating fiber fabrication technique, Biotechnolog. Adv., 28, 325-347, 2010.
18. Sill T.J. and von Recum H.A., Electrospinning: Applications in drug delivery and tissue engineering, Biomaterials, 29,
1989-2006, 2008. 
19. Soliman S., et al., Controlling the porosity of fibrous scaffolds by modulating the fiber diameter and packing density, J.
Biomed. Mater. Res. Part A, 96, 566-574, 2011.
20. Gaumer J., et al., Structure-function relationships and sourceto- ground distance in electrospun polycaprolactone, Acta
Biomater., 5, 1552-1561, 2009.
21. Heydarkhan-Hagvall S., et al., Three-dimensional electrospun ECM-based hybrid scaffolds for cardiovascular tissue
engineering, Biomaterials, 29, 2907-2914, 2008.
22. Simpson D.G. and Bowlin G.L., Tissue-engineering scaffolds: Can we re-engineer mother nature? Expert Rev. Med.
Devices, 3, 9-15, 2006.
23. Kidoaki S., Kwon I.K., and Matsuda T., Mesoscopic spatial designs of nano-and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques, Biomaterials, 26, 37- 46. 2005.
24. Stitzel J., et al., Controlled fabrication of a biological vascular substitute, Biomaterials, 27, 1088-1094, 2006.
25. Ekaputra A.K., et al., Combining electrospun scaffolds with electrosprayed hydrogels leads to three-dimensional cellularization of hybrid constructs, Biomacromolecules, 9, 2097-2103, 2008.
26. Zhu Y., et al., Macro‐alignment of electrospun fibers for vascular tissue engineering, J. Biomed. Mater. Res. Part B: Appl. Biomater., 92, 508-516, 2010.
27. Sato M., et al., Small-diameter vascular grafts of< i> Bombyx mori silk fibroin prepared by a combination of electrospinning and sponge coating, Mater. Lett., 64, 1786-1788, 2010.
28. Uttayarat P., et al., Micropatterning of three-dimensional electrospun polyurethane vascular grafts, Acta Biomater., 6,
4229-4237, 2010. 
29. Soletti L., et al., A bilayered elastomeric scaffold for tissue engineering of small diameter vascular grafts, Acta Biomater., 6, 110-122, 2010. 
30. Nieponice A., et al., In vivo assessment of a tissue-engineered vascular graft combining a biodegradable elastomeric scaffold and muscle-derived stem cells in a rat model, Tissue Eng. Part A, 16, 1215-1223, 2010.
31. He W., et al., Pericyte-based human tissue engineered vascular grafts, Biomaterials, 31, 8235-8244, 2010.
32. Ju Y.M., et al., Bilayered scaffold for engineering cellularized blood vessels, Biomaterials, 31, 4313-4321, 2010.
33. Vaz C., et al., Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique,
Acta Biomater., 1, 575-582, 2005. 
34. Huang C., et al., Electrospun collagen–chitosan–TPU nanofibrous scaffolds for tissue engineered tubular grafts, Colloid.
Surf. B: Biointerfaces, 82, 307-315, 2011. 
35. Garg K., et al., Angiogenic potential of human macrophages   on electrospun bioresorbable vascular grafts, Biomed. Mater.,4, 031001, 2009.
36. Garg K., Ryan J., and Bowlin G., Modulation of mast cell adhesion, proliferation, and cytokine secretion on electrospun
bioresorbable vascular grafts, J. Biomed. Mater. Res. Part A, 97, 405-413, 2011.
37. He W., et al., Tubular nanofiber scaffolds for tissue engineered small‐diameter vascular grafts, J. Biomed. Mater. Res.
Part A, 90, 205-216, 2009.
38. Soletti L., et al., In vivo performance of a phospholipid‐coated bioerodable elastomeric graft for small‐diameter vascular applications, J. Biomed. Mater. Res. Part A, 96, 436-448, 2011.
39. Boland E.D., et al., Utilizing acid pretreatment and electrospinning to improve biocompatibility of poly(glycolic acid)
for tissue engineering, J. Biomed. Mater. Res. Part B: Appl. Biomater., 71, 144-152, 2004.
40. de Valence S., et al., Long term performance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model, Biomaterials, 33, 38-47, 2012.
41. Chen, F., et al., Biocompatibility, alignment degree and mechanical properties of an electrospun chitosan–P (LLA-CL)
fibrous scaffold, J. Biomater. Sci., Polym. Ed., 20, 2117-2128, 2009.
42. McClure M.J., et al., The use of air-flow impedance to control fiber deposition patterns during electrospinning, Biomaterials, 33, 771-779, 2012.
43. Stegemann J.P., Kaszuba S.N., and Rowe S.L., Review: Advances in vascular tissue engineering using protein-based biomaterials, Tissue Eng., 13, 2601-2613, 2007.
44. Stankus J.J., et al., Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix, Biomaterials, 27, 735-744, 2006.
45. Powell H. and Boyce S., Fiber density of electrospun gelatin scaffolds regulates morphogenesis of dermal–epidermal skin substitutes, J. Biomed. Mater. Res. Part A, 84, 1078-1086, 2008.
46. Liao S., et al., Biomimetic electrospun nanofibers for tissue regeneration, Biomed. Mater., 1, R45, 2006.
47. Khorshidi S., et al., A review of key challenges of electrospun scaffolds for tissue‐engineering applications, J. Tissue Eng. Rregenerat. Med., 2015.
48. Chen M., et al., Role of fiber diameter in adhesion and proliferation of NIH 3T3 fibroblast on electrospun polycaprolactone scaffolds, Tissue Eng.,13, 579-587, 2007.
49. Badami A.S., et al., Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates, Biomaterials, 27, 596-606, 2006.
50. Soliman S., et al., Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning, Acta Biomater., 6, 1227-1237, 2010.
51. Annabi N., et al., Controlling the porosity and microarchitecture of hydrogels for tissue engineering, Tissue Eng. Part B: Rev., 16, 371-383, 2010.
52. Simonet M., et al., Ultraporous 3D polymer meshes by lowtemperature electrospinning: use of ice crystals as a removable void template, Polym. Eng. Sci., 47, 2020-2026, 2007.
53. López-Rubio A., et al., Encapsulation of living bifidobacteria in ultrathin PVOH electrospun fibers, Biomacromolecules,
10, 2823-2829, 2009. 
54. Solouk A., et al., Application of plasma surface modification techniques to improve hemocompatibility of vascular grafts: A review, Biotechnol. Appl. Biochem., 58, 311-327. 2011.
55. Yoo H.S., Kim T.G., and Park T.G., Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery, Adv. Drug Deliv. Rev., 61, 1033-1042, 2009.
56. Solouk A., et al., Surface modification of POSS‐nanocomposite biomaterials using reactive oxygen plasma treatment
for cardiovascular surgical implant applications, Biotechnol. Appl. Biochem., 58, 147-161, 2011.
57. Pektok E., et al., Degradation and healing characteristics of small-diameter poly(ε-caprolactone) vascular grafts in the rat systemic arterial circulation, Circulation, 118, 2563-2570, 2008.
58. Ye L., et al., The in vitro and in vivo biocompatibility evaluation of heparin–poly(ε‐caprolactone) conjugate for vascular tissue engineering scaffolds, J. Biomed. Mater. Res. Part A, 100, 3251-3258, 2012.
59. Lu G., et al., Design and preparation of polyurethane-collagen/ heparin-conjugated polycaprolactone double-layer bionic small-diameter vascular graft and its preliminary animal tests, Chinese Med. J., 126, 1310-1316, 2013.
60. Hashi C.K., et al., Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts,
Proceedings of the National Academy of Sciences, 104, 11915-11920, 2007.
61. Hashi C.K., et al., Antithrombogenic modification of smalldiameter microfibrous vascular grafts, Arterioscle., Thromb., Vasc. Biol., 30, 1621-1627, 2010.
62. Tillman B.W., et al., The in vivo stability of electrospun polycaprolactone-collagen scaffolds in vascular reconstruction, Biomaterials, 30, 583-588, 2009.
63. Hong Y., et al., A small diameter, fibrous vascular conduit generated from a poly(ester urethane) urea and phospholipid polymer blend, Biomaterials, 30, 2457-2467, 2009.
64. Cleary M.A., et al., Vascular tissue engineering: The next generation, Trends in Molecul. Med., 18, 394-404, 2012.
65. Mo X., et al., Electrospun P (LLA-CL) nanofiber: A biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation, Biomaterials, 25, 1883-1890, 2004.
66. Xu C., et al., Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering, Tissue Eng., 10,1160-1168, 2004.
67. Kuwabara F., et al., Novel small-caliber vascular grafts with trimeric peptide for acceleration of endothelialization, The
Ann. Thorac. Surg., 93, 156-163, 2012. 
68. Kato R., et al., Peptide array-based interaction assay of solidbound peptides and anchorage-dependant cells and its effectiveness in cell-adhesive peptide design, J. Biosci. Bioeng., 101, 485-495, 2006.
69. Zheng W., et al., Endothelialization and patency of RGDfunctionalized vascular grafts in a rabbit carotid artery model,
Biomaterials, 33, 2880-2891, 2012.
70. Pham Q.P., Sharma U., and Mikos A.G., Electrospun poly(ε-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: Characterization of scaffolds and measurement of cellular infiltration, Biomacromolecules, 7, 2796-2805, 2006.
71. Lowery J.L., Datta N., and Rutledge G.C., Effect of fiber diameter, pore size and seeding method on growth of human
dermal fibroblasts in electrospun poly(ɛ-caprolactone) fibrous mats, Biomaterials, 31, 491-504, 2010.
72. Nam J., et al., Improved cellular infiltration in electrospun fiber via engineered porosity, Tissue Eng., 13, 2249-2257, 2007.
73. De Valence S., et al., Advantages of bilayered vascular grafts for surgical applicability and tissue regeneration, Acta Biomater., 8, 3914-3920, 2012.
74. Baker B.M., et al., The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers, Biomaterials, 29, 2348-2358, 2008.
75. McClure M.J., Simpson D.G., and Bowlin G.L., Tri-layered vascular grafts composed of polycaprolactone, elastin, collagen, and silk: Optimization of graft properties, J. Mechan. behavior Biomed. Mater., 10, 48-61, 2012.
76. Leong M.F., et al., In vitro cell infiltration and in vivo cell infiltration and vascularization in a fibrous, highly porous
poly(D,L‐lactide) scaffold fabricated by cryogenic electrospinning technique, J. Biomed. Mater. Res. Part A, 91, 231-240, 2009.
77. Wu W., Allen, R.A., and Wang Y., Fast-degrading elastomer enables rapid remodeling of a cell-free synthetic graft into a neoartery, Nature Med., 18, 1148-1153, 2012. 
78. Zonari A., et al., Endothelial differentiation of human stem cells seeded onto electrospun polyhydroxybutyrate/polyhydroxybutyrate- co-hydroxyvalerate fiber mesh, PLOS One, 7, e35422, 2012.
79. Zhang J., et al., Engineering of vascular grafts with genetically modified bone marrow mesenchymal stem cells on poly(propylene carbonate) graft, Artificial Organs, 30, 898- 905, 2006.