بررسی و مدلسازی تأثیر شکل میدان مغناطیسی بر فرآیند الکتروریسی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری/دانشگاه یزد

2 عضو هیات علمی دانشکده مهندسی نساجی دانشگاه یزد

3 عضو هیات علمی/دانشکده مهندسی نساجی دانشگاه صنعتی امیرکبیر

چکیده

میدان مغناطیسی، منجر به جهت‌گیری ذرات متحرک باردار می‌شود. بر این اساس جهت کنترل مسیر حرکت الیاف در فرآیند الکتروریسی می‌توان از میدان مغناطیسی به‌عنوان یک المان خارجی استفاده کرد. در این مطالعه جهت هدایت و کنترل ناپایداری در سیستم الکتروریسی، از تجهیزات مغناطیسی شامل یک فریم نگه‌دارنده و چند آهنربا استفاده گردید. افزودن تجهیزات مغناطیسی موجب تغییر در مسیر حرکت و مساحت نشست الیاف بر صفحه جمع کننده می‌شود. نتایج حاصل از مدل‌سازی عددی میدان‌های الکتریکی و مغناطیسی و مشاهدات تجربی نشان داد که تجهیزات میدان مغناطیسی علاوه بر ایجاد میدان مغناطیسی و تأثیر بر بارهای حمل شده بر روی جت، بر میدان الکتریکی هم مؤثر هستند. استفاده از تجهیزات مغناطیسی موجب افزایش 20 درصدی شدت میدان الکتریکی در نوک سوزن، انحراف و افزایش 10 درصدی میدان الکتریکی به سمت لبه‌های تجهیزات و یکنواختی میدان در محدوده تجهیزات مغناطیسی است. تغییرات میدان الکتریکی موجب افزایش انرژی اعمالی به الیاف و درنتیجه کاهش 80 درصدی مساحت وب نانوالیاف می‌شود. بالاترین تغییر شکل و مساحت وب نانوالیاف با استفاده از یک جفت آهنربا که به صورت قرینه نصب شده‌اند به دست آمد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating and modeling the effect of magnetic field shape on electrospinning process

نویسندگان [English]

  • Mohammad Reza Fallahzade 1
  • Pedram Payvandy 2
  • Mohammad Ali Tavanaie 3
1 PhD Student/Yazd University
2 Associate Professor ,Yazd University
3 Associate Professor
چکیده [English]

The magnetic field changes the direction of the moving charged particles. Thus, the magnetic field can be used as an external force to control the movement direction of the polymer jet in the electrospinning process. In this study, a piece of magnetic equipment, including a frame with several magnets, was used to control the electrospun polymer jet stability. Numerical modeling of the electric and magnetic fields and experimental observations showed that the magnetic equipment creates the magnetic field and affects the movement direction of the charged jet, and the electric field. The use of magnetic equipment caused a 20% increase in the intensity of the electric field at the tip of the needle and a 10% increase in the electric field towards the edges of the equipment and evenness of the field within the magnetic equipment range. Changes in the electric field increase the energy applied to the fibers and thereby reduce the area of the nanofibrous web by 80%. The highest deformation and the most extensive area of the web area were obtained using a pair of magnets that were placed symmetrically along a common axis on both sides of the electrospinning needle.

کلیدواژه‌ها [English]

  • Electrospinning
  • Electric field
  • Magnetic field
  • Control and engineer of nanofibers
[1] Afshari, M., Electrospun nanofibers. Woodhead Publishing, 2016.
[2] Ciechanska, D., Multifunctional bacterial cellulose/chitosan composite materials for medical applications, Fibres and Textiles in Eastern Europe, 12(4), 69-72, 2004.
[3] Fang, J., Niu, H., Lin, T., Wang, X., Applications of electrospun nanofibers, Chinese science bulletin, 53(15), 2265-2286, 2008.
[4] Wang, C., Cheng, Y.-W., Hsu, C.-H., Chien, H.-S., Tsou, S.-Y., How to manipulate the electrospinning jet with controlled properties to obtain uniform fibers with the smallest diameter?—a brief discussion of solution electrospinning process, Journal of Polymer Research, 18(1), 111-123, 2011.
[5] Beachley, V., Wen, X., Polymer nanofibrous structures: Fabrication, biofunctionalization, and cell interactions, Progress in polymer science, 35(7), 868-892, 2010.
[6] Mazoochi, T., Hamadanian, M., Ahmadi, M., Jabbari, V., Investigation on the morphological characteristics of nanofiberous membrane as electrospun in the different processing parameters, International Journal of Industrial Chemistry, 3(1), 7-14, 2012.
[7] Pawlowski, K., Belvin, H., Raney, D., Su, J., Harrison, J., Siochi, E., Electrospinning of a micro-air vehicle wing skin, Polymer Engineering, 44(4), 1309-1314, 2003.
[8] Santos, J. P., Fernández, M. J., Fontecha, J. L., Matatagui, D., Sayago, I., Horrillo, M. C., Gracia, I., Nanocrystalline tin oxide nanofibers deposited by a novel focused electrospinning method. Application to the detection of TATP precursors, Sensors, 14(12), 24231-24243, 2014.
[9] Kim, G., Yoon, H., Lee, H., Park, G.-M., Koh, Y., Polycarprolactone ultrafine fiber membrane fabricated using a charge-reduced electrohydrodynamic process, Macromolecular research, 17(7), 533-537, 2009.
[10] Barry, C., Chen, J., Mead, J., Nanomanufacturing Handbook: Nanomanufacturing processes using polymeric materials, CRC Press, 324-361, 2006.
[11] Yarin, A. L., Koombhongse, S., Reneker, D. H., Bending instability in electrospinning of nanofibers, Journal of applied physics, 89(5), 3018-3026, 2001.
[12] Yuan, H., Zhao, S., Tu, H., Li, B., Li, Q., Feng, B., Peng, H., Zhang, Y., Stable jet electrospinning for easy fabrication of aligned ultrafine fibers, Journal of Materials Chemistry, 22(37), 19634-19638, 2012.
[13] Zhou, Q., Bao, M., Yuan, H., Zhao, S., Dong, W., Zhang, Y., Implication of stable jet length in electrospinning for collecting well-aligned ultrafine PLLA fibers, Polymer Engineering, 54(25), 6867-6876, 2013.
[14] Wu, Y.-H., Li, H.-P., Shi, X.-X., Wan, J., Liu, Y.-F., Yu, D.-G., Effective utilization of the electrostatic repulsion for improved alignment of electrospun nanofibers, Journal of Nanomaterials, 2016, 8, 2016.
[15] Shin, Y., Hohman, M., Brenner, M., Rutledge, G., Experimental characterization of electrospinning: the electrically forced jet and instabilities, Polymer Engineering, 42(25), 09955-09967, 2001.
[16] Yousefzadeh, M., Latifi, M., Amani-Tehran, M., Teo, W.-E., Ramakrishna, S., A Note on the 3D Structural Design of Electrospun Nanofibers, Journal of Engineered Fabrics, 7(2), 2012.
[17] Hwang, W., Pang, C., Chae, H., Fabrication of aligned nanofibers by electric-field-controlled electrospinning: insulating-block method, Nanotechnology, 27(43), 9, 2016.
[18] Mi, S., Kong, B., Wu, Z., Sun, W., Xu, Y., Su, X., A novel electrospinning setup for the fabrication of thickness-controllable 3D scaffolds with an ordered nanofibrous structure, Materials Letters, 160, 343-346, 2015.
[19] Zernetsch, H., Repanas, A., Rittinghaus, T., Mueller, M., Alfred, I., Glasmacher, B., Electrospinning and mechanical properties of polymeric fibers using a novel gap-spinning collector, Fibers Polymers, 17(7), 1025-1032, 2016.
[20] Wu, Y., Yu, J. Y., He, J. H., Wan, Y. Q., Controlling stability of the electrospun fiber by magnetic field, Chaos, Solitons and Fractals, Article 32(1), 5-7, 2007.
[21] Xu, L., A mathematical model for electrospinning process under coupled field forces, Chaos, Solitons and Fractals, Article 42(3), 1463-1465, 2009.
[22] Xu, L., Wu, Y., Nawaz, Y., Numerical study of magnetic electrospinning processes, Computers and Mathematics with Applications, Article 61(8), 2116-2119, 2011.
[23] Liu, H.-Y., Xu, L., Si, N., Effect of magnetic intensity on diameter of charged jets in electrospinning, Thermal Science, 18(5), 1451-1454, 2014.
[24] Badieyan, S. S., Janmaleki, M., Nanofiber formation in the presence of an external magnetic field in electrospinning, Journal of Polymer Engineering, 35(6), 587-596, 2015.
[25] Huang, W., Liu, B., Chen, Z., Wang, H., Ren, L., Jiao, J., Zhuang, L., Luo, J., Jiang, L., Fabrication of magnetic nanofibers by needleless electrospinning from a self-assembling polymer ferrofluid cone array, Nanomaterials, 7(9), 12, 2017.
[26] Yang, D., Zhang, J., Zhang, J., Nie, J., Aligned electrospun nanofibers induced by magnetic field, Journal of applied polymer science, 110(6), 3368-3372, 2008.
[27] Liu, Y., Zhang, X., Xia, Y., Yang, H., Magnetic‐field‐assisted electrospinning of aligned straight and wavy polymeric nanofibers, Advanced Materials, 22(22), 2454-2457, 2010.
[28] Roskov, K. E., Atkinson, J. E., Bronstein, L. M., Spontak, R. J., Magnetic field-induced alignment of nanoparticles in electrospun microfibers, RSC Advances, 2(11), 4603-4607, 2012.
[29] Liu, H.-Y., Xu, L., Tang, X.-P., Sun, Z. Q., Effect of Fe3O4 nanoparticles on magnetic electrospun nanofibers, The Journal of The Textile Institute, 106(5), 503-509, 2015.
[30] Sanchez, J. A. G., Furlan, R., Valle, R. L., Valle, P., da Silva, A. N. R., Influence of a magnetic field in the electrospinning of nanofibers using solutions with PVDF, DMF, acetone and Fe3O4 nanoparticles, 28th Symposium on Microelectronics Technology and Devices, Curitiba-Brazil, IEEE,1-3, 2013.