تاثیر ترکیبات ضد چروک بر خواص فیزیکی پارچه‌های سلولزی

نوع مقاله : مقاله مروری

نویسندگان

1 هیات علمی

2 دانشجو

چکیده

الیاف سلولزی نظیر پنبه از دیرباز در صنعت نساجی مورد استفاده قرار می‌گرفت. جذب بالای رطوبت و سازگاری با بدن از مزایای این الیاف است. امروزه با وجود پیشرفت و توسعه الیاف مصنوعی، همچنان الیاف سلولزی در زمره پرمصرف‌ترین الیاف در تولید منسوجات به شمار می‌رود. یکی از مهم‌ترین معایب استفاده از منسوجات سلولزی، عدم ثبات ابعادی و ایجاد چروک در ساختار پارچه می‌باشد که در صورت اعمال تنش در شرایط مرطوب ایجاد می‌گردد. از اوایل دهه بیستم میلادی تحقیقاتی به منظور ضد چروک کردن این منسوجات صورت گرفت. محققین استفاده از ترکیبات شیمیایی گوناگون نظیر رزین‌های فرمالدئید و پلی کربوکسیلک اسیدها را برای رفع این مشکل پیشنهاد کردند. منسوج تکمیل شده با توجه به خواص ایجاد شده کاربردهای متفاوتی دارد. بعضی از ترکیبات ضد چروک علاوه بر بهبود چروک پذیری پارچه سلولزی باعث افزایش ثبات ابعادی و بهبود پرزدهی پارچه می‌گردند. هرچند به‌کار بردن این ترکیبات بر روی پارچه اثرات نامطلوبی از جمله: کاهش استحکام کششی، مقاومت در برابر پارگی و تغییر رنگ پارچه را در بر دارد. در این تحقیق برخی اثرات ناخواسته ایجاد شده در اثر مصرف مواد ضد چروک مورد بررسی قرار گرفته است. 

کلیدواژه‌ها


عنوان مقاله [English]

The effect of anti-wrinkle compounds on physical properties of cellulose fabrics

نویسندگان [English]

  • Maryam Sharzehee 1
  • Marzieh Ghaemizadah 2
2 Yazd University - Ph.D Student
چکیده [English]

Cellulose fibers such as cotton have long been used in the textile industry. The benefits of these fibers are due to good moisture absorption and body adaptability. Today, despite the advancement and development of man-made fibers, cellulose fibers are still one of the most widely used fibers in textile production. Dimensional instability and wrinkles after washing are common problems of cellulosic fabrics caused by stress in wet conditions. Research on anti-wrinkle textile finishes has been conducted since the early twentieth century, and researchers have used a variety of chemicals, including formaldehyde resins and polycarboxylic acids, for this purpose. Based on the applied chemical treatment, the finished cellulosic fabrics may find different applications. These anti-wrinkle chemical treatments increase dimensional stability and improve the texture of the treated fabric. However, these chemical treatment has some adverse effects on the treated fabrics, such as tensile strength reduction, tear-resistance decrement, and discoloration. In this study, we investigated some of these non-desirable outcomes caused by anti-wrinkle chemical treatments.

کلیدواژه‌ها [English]

  • Keywords: Anti wrinkle finish
  • Physical Properties
  • Cellulose Fabric
  • Nanoparticles
[1].   Schindler. W. D., Hauser. P. J., Chemical finishing of Textiles, Woodhead Publishing Ltd, 2004.
[2].   Tomasino. C., Chemistry & Technology of Fabric Preparation & Finishing, North Carolina State University, 1999.
[3].   Chowdhury, A. K. R. Easy-care finishing, Principles of Textile Finishing, 245-284, 2017.
[4].   Vanneste, M. , Easy care finishes for textiles, Functional Finishes for Textiles – Improving Comfort, Performance and Protection, 1Ed: part 7, Woodhead Publishing, Roshan Paul, pp. 227-256, 2014.
[5].   Chattopadhyay. R. , Design of Apparel Fabrics: Role of fiber, yarn and fabric parameters on its functional attributes, J. Tex Eng, 54, 6, 179-190, 2008
[6].   Yu. X. , Cao. W. , Wei. Y. , Ding. X. , Wrinkling mechanism of woven cotton fabrics during domestic tumble drying, J. Drying Technology,2017.
[7].   Schifer. H. F. , Evaluation of crease~res istant finishes for fabrics, N. ational Bureau of Standards, 20, 1938.
[8].   Bridson. R. , Marino. S. , Fedkiw. R. , Simulation of Clothing with Folds and Wrinkles, The Eurographics Association, 2003.
[9].   Liu. CH. , New Method of Fabric Wrinkle Measurement Based on Image Processing, FIBRES & TEXTILES, 22, 1, 103, 51-55, 2014.
[10].                        Petersen. H. , The chemistry of crease‐resist crosslinking agent, Coloration and Related , 17, 1, 7-22, 1987.
[11].                        Xu. W. , Wang. X. , Understanding and Improving the Durability of Textiles, Woodhead Publishing Series in Textiles , 132, Woodhead Publishing Limited, 2012.
[12].                        Hurwitz. M. D. , Conlon. L. E. , Dialdehydes as Cotton Cellulose Cross-Linkers. Textile Research Journal, 28, 3, 257–262, 1958.
[13].                        Verma. M. , Khambra. K. , Yadav. N. , Singh. R. , effect of crease resistant finish on crease recovery properties of cotton fabric, International Journal of Textile and Fashion Technology , 3, 9-14, 2013.
[14].                        Campbell. H. J. , Francis. T. , The Cross-Linking of Cotton Cellulose by Aliphatic Dicarboxylic Acids, Textile Research Journal, 35, 3, 260–270, 1965.
[15].                        Reinhardt, R. M. , & Kottes Andrews, B. A. , Loss of Free Formaldehyde from Cotton Fabrics. Text. Res. J, 56, 2, 144–150, 1986.
[16].                        اسدی کنی، س. بشری، آ.، کاربرد نانوفناوری در تکمیل ضدچروک منسوجات. نانوتکنولوژی، 1393.
[17].                        امامی قره‌حاجلو م.، شاه‌بابائی ش.، استوار ف.، تأثیر تکمیل نانو بر روی بهبود چروک‌پذیری منسوجات. نساجی امروز، 171، 1395.
[18].                        Can. Y. , Akaydin. M. , Turhan. Y. , Ay. E. , Effect of wrinkle resistance finish on cotton fabric properties, J. Fibre Text, 34, 183-186, 2009.
[19].                        Tania. I. S. , Uddin. Md. Z, Chowdhury. K. P. , Investigation on the Physical Properties of 100% Cotton Knit Fabric by Treating with Crossslinking Agents, J. Engine. Tech, 8, 2, 2018.
[20].                        Kang. I. S. , Yang. C. Q. , Weishu. W. , Lickfield. G. C. , Mechanical Strength of Durable Press Finished Cotton Fabrics. Textile Research Journal, 68, 11, 865–870, 1998.
[21].                        Farzana. N. , Naser. Md. A. , Haque. A. , Islam. A. , Smriri. S. A. , Comparative Enactment of Formaldehyde-free and Formaldehyde-based Cross-linkers on Cotton Woven Fabrics, Tekstilec, 60(2), 107-115, 2017.
[22].                        Dhiman. G. , Chakraborty. J. N. , Assessment of durable press performance of cotton finished with modified DMDHEU and citric acid, Fash Text, 4, 18, 2017.
[23].                        Nallathambi. G. , Optimization of process parameters for cotton crease resistant finish using citric acid, J. Fibre & Textile Research, 34, 359-367, 2009.
[24].                        Li. Z. R. , Fu. K. J. , Wang, L. J. , Liu. F. , Synthesis of a novel perfluorinated acrylate copolymer containing hydroxyethyl sulfone as crosslinking group and its application on cotton fabrics. Journal of Materials Processing Technology, 205, 243–248, 2008.
[25].                        Yang. C. Q. , Weishu Wei, Lickfield. G. C. , Mechanical Strength of Durable Press Finished Cotton Fabric. Textile Research Journal, 70, 2, 143–147, 2000.
[26].                        Chattopandhyay. D. P. , Sharma. D. N. , De. P. , Studies on formaldehyde-free crease-resistant finishing of cotton fabric using citric acid and selective chemical additives, J. Fiber& Textile research, 24, 284-289, 1999.
[27].                        Hashem. M. , Ibrahim. N. A. , El-Shafei. A. , Refaie. R. , Hauser. P. , An eco-friendly – novel approach for attaining wrinkle free/soft-hand cotton fabric, Carbohydrate Polymers, 78, 4, 690–703, 2009.
[28].                        Rowland, S. P. , Stark, S. M. , Cirino, V. O. , Mason, J. S. Structural Features of Cotton Treated by Pad-Dry-Cure, Mild-Cure, Poly-Set, and Wet-Fix, Text. Res. J. , 1, 57-64 1971.
[29].                        Chowdhury. K. P. , Effect of Special Finishes on the Functional Properties of Cotton Fabrics, J. Text. Sci. Technol, 4, 49-66, 2018.
[30].                        Yang. C. Q. , Wei. W. , Lickfield. G. C. Mechanical Strength of Durable Press Finished Cotton Fabric: Part III: Change in Cellulose Molecular Weight, Text . Res. J. , 70, 10, 910-915, 2000.
[31].                        Can. Y. , Akaydin. M. , Turhan. Y. , Ay. E. , Effect of Wrinkle Resistance Finish on Cotton Fabric Properties, I. J. F. T. R. , 34, 183-186, 2009.
[32].                        Lu. M. , Crease Resistant Finishing of Cotton Fabric with a Complex of Fibroin and Citric Acid, FIBRES & TEXTILES in Eastern Europe, 18, 3, 86-88. 2010.
[33].                        Mukthy. A. A. , Abu Yousuf Mohammad. A. Y. , Azim. A. , Effects of Resin Finish on Cotton Blended Woven Fabrics, International Journal of Scientific Engineering and Technology, 3, 7, 983-990, 2014.
[34].                        Yuen. C. W. M, Ku. S. K. A. , Li. Y. , Cheng. Y. F. , Kan, C. W. F. , Choi. P. S. R. , improvement of wrinkle-resistant treatment by nanotechnology, J. Text. Inst. , 100, 2, 173–180, 2009.
[35].                        Aksoy. S. A. , Genç. E. , Functionalization of cotton fabrics by esterification cross-linking with 1,2,3,4-butanetetracarboxylic acid (BTCA), J. Cellulose Chem. Technol, 49 (5-6), 405-413, 2015.
[36].                        نظری، ع.، منتظر، م.، رحیمی، م. ک.، تکمیل هم‌زمان ضدمیکروب و ضدچروک شدن کالای پنبه‌ای سفید و کاتیونی شده با استفاده از نانوتیتانیوم‌دی‌اکساید و بوتان تتراکربوکسیلیک اسید، علوم و تکنولوژی پلیمر، 22 ،1، 41-51، 1388
[37].                        Gupta. D. , Haile. A. , Multifunctional properties of cotton fabric treated with chitosan and carboxymethyl chitosan. Carbohydrate Polymers, 69, 1, 164–171. 2007
[38].                        Lam, Y. L. , Kan, C. W. ,Yuen, C. W. M. , Effect of concentration of titanium dioxide acting as catalyst or co-catalyst on the wrinkle-resistant finishing of cotton fabric. Fibers Polym, 11(4), 551–558, 2010.
[39].                        Yuen. C. W. M. , Ku. S. K. A, Li. Y. , Cheng. Y. F. , Kan, C. W. F. , Choi. P. S. R. , Using nano TiO2 as Co-catalyst for improving Werinkle-resistante of cotton fabric, Surf. Rev. Lett. , 14, 4, 571-575, 2007.
[40].                        Lam. Y. L, Kan. C. W, Yuen. C. W. Wrinkle-resistant finishing with dimethyloldihydroxyethyleneurea (DMDHEU) – the effect of co-catalyst, Text. Res. J. , 81, 14, 2010.
[41].                        Huang. K. S. , Yang. K. L. , Lin. S. J. , Lian. W. T. , Antiwrinkle treatment of cotton fabric with a mixed sol of TEOS-TTB/DMDHEU. Journal of Applied Polymer Science, 106, 4, 2559–2564, 2007.
[42].                        Kan. C. W. , Plasma-Assisted Titanium Dioxide Wrinkle Resistant Treatment of Cotton Fabric, Chem. Eng. Appl. , 5, 3, 2014.
[43].                        Nallathambia. G. , Ramachandranb. T. , Rajendranc. V. , Palanivelud. F. , Effect of Silica Nanoparticles and BTCA on Physical Properties of Cotton Fabrics, Mater. Res. ; 14, 4, 552-559, 2011.
[44].                        Roe. B. , Zhang. X. , Durable Hydrophobic Textile Fabric Finishing Using Silica Nanoparticles and Mixed Silanes. Textile Research Journal, 79, 12, 1115–1122. 2009.
[45].                        Korkmaz, N. , Alay Aksoy, S. , Enhancing the performance properties of ester-cross-linked cotton fabrics using Al2O3-NPs, Text. Res. J. , 86, 6, 636–648, 2015.
[46].                        Alimohammadi, F. , Gashti, M. P. , Shamei, A. , A novel method for coating of carbon nanotube on cellulose fiber using 1, 2,3 ,4-butanetetracarboxylic acid as a cross-linking agent, Prog. Org. Coat, 74, 3, 470–478, 2012.
[47].                        Montazer. M. , Alimohammadi. F. , Shamei. A. , Rahimi. M. K, Durable antibacterial and cross-linking cotton with colloidal silver nanoparticles and butane tetracarboxylic acid without yellowing, Colloids and Surfaces B: Biointerfaces 89, 196–202, 2012.
[48].                        Kapar. B. , Gunesoglu. C. , The comparison between the effects of nano and conventional crease recovery treatment process parameters, Journal of Textile Engineering & Fashion Technology, 4, 4, 2018.
[49].                        Arık. B. , Yavas. A. , Avinc. O. , Antibacterial and Wrinkle Resistance Improvement of Nettle Biofiber Using Chitosan and BTCA, FIBRES & TEXTILES in Eastern Europe, 25, 3, 123, 106-111, 2017.
[50].                        Huang. L. , Xiao. L. , Yang. G. , Chitosan Application in Textile Processing, Curr Trends Fashion Technol. Text. Eng, 4, 2, 2018.