مروری بر کاربرد نانوالیاف در پزشکی

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی دانشگاه آزاد واحد یادگار امام خمینی (ره) شهرری- عضو باشگاه پژوهشگران جوان

2 عضو هیات علمی دانشگاه آزاد اسلامی واحد یادگار امام خمینی (ره)شهرری

3 دانشگاه آزاد واحدیادگار امام خمینی(ره)شهرری

چکیده

فناوری نانوالیاف رویکرد منحصر به فردی است که توجه بسیاری از محققان را به عنوان راه حلی برای چالش­های جاری در زمینه­های پزشکی همچون مراقبت­های سوختگی و زخم، بازسازی اعضای بدن ، درمان پوکی استخوان و بیماری­های مختلف مورد توجه قرار می دهد. طراحی داربست، نقش تعیین کننده ای در این زمینه دارد. الکتروریسی از متداول ترین روش­ها برای تولید نانوالیاف با نسبت سطح به حجم و تخلخل زیاد است که می تواند شرایط مشابه ماتریس خارج سلولی(ECM)  را فراهم کند. این امر به دلیل مقیاس نانومتری قطر الیاف ECM است که می تواند با روش الکتروریسی و همچنین ساختار متخلخل آن شبیه سازی شود. در این بررسی، کاربرد نانوالیاف در شاخه­های مختلف پزشکی مانند مهندسی بافت، رهایش دارو و پانسمان زخم در سال­های اخیر مورد مطالعه قرار گرفته است. این بررسی فرصت­هایی را برای توسعه مواد و تکنیک­های جدید فراهم می کند که توانایی ایجاد روش­های تحلیلی سریع، دقیق و قابل اطمینان را بهبود می بخشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A review on the medical application of electrospun nanofibers

نویسندگان [English]

  • Atiyeh Ghajarieh 1
  • Sima Habibi 2
  • Azam Talebian 3
1 Textile department , Yadegar-e-Imam Khomeini(RAH) shahr-e-Rey branch
2 textile department , Islamic Azad University Yadegar -e-Imam Khomeini (RAH) shar-e Rey branch
3 Islamic azad university yadegar-e-Imam khomeini(RAH) Shahr-e-Rey branch
چکیده [English]

Nanofiber technology is an exciting research area that has attracted the attention of several researchers as a potential solution to the current challenges in the biomedical field for wound dressing, organ repair, and treatment for osteoporosis. Nanofibrous meshes mimic the porous structure of the natural extracellular matrix (ECM); hence they are advantageous for tissue regeneration and can be used for sustaining the release of encapsulated drug or growth factor. Electrospinning is one of the most common methods for the fabrication of nanofibrous meshes, with very high surface area to volume ratio and porous structure, for various biomedical and tissue engineering applications.  The electrospun meshes can be used for making scaffolds similar in physical structure to that of ECM. The electrospun nanofibers mimic the ECM nano-fibrils and porous structure. In this review, the applications of nanofibers in various biomedical areas such as tissue engineering, drug delivery and wound dressing are summarized. This provides an overview of the development of new materials and techniques to be used in biomedical engineering applications and reliable analytical techniques for their characterization.

کلیدواژه‌ها [English]

  • drug delivery
  • electrospinning
  • nanofiber
  • tissue engineering
  • wound dressing
  1.  

    1. Podichety, N., Benazir, F., Tigulla, P., Muvvala, S., Role of nanobiotechnology in pharmacy and medicine: a review, J. Pharm. Sci. Innov. 6(2), 31-36, 2017.
    2. Leung, V., KO, F., Biomedical applications of nanofibers, Polym. Adv. Technol., 22(3), 350-365, 2011.
    3. Akhgari, A., Shakib, Z., Sanati, S., A review on electrospun nanofibers for oral drug delivery, Nanomed., 4(4), 197-207, 2017.
    4. Mo, X., Sun, B., Wu, T., Li, D., Electrospun nanofibers for tissue engineering. In Electrospinning: Nanofabrication and Applications, William Andrew Publishing, 2019.
    5. Abudula, T., Mohammed, H., Joshi Navare, K., Colombani, T., Bencherif, S., Memic, A., Latest Progress in Electrospun Nanofibers for Wound Healing Applications, ACS Appl. Bio Mater., 2019.
    6. R. Asmatulu and W. S. Khan, Synthesis and Applications of Electrospun Nanofibers, R. Asmatulu and W. S. Khan, Eds.: Elsevier, 2019.
    7. Rošic, R., Kocbek, P., Pelipenko, J., Kristl, J., Baumgartner, S., Nanofibers and their biomedical use, Acta Pharm., 63(3), 295-304, 2013.
    8. علی اکبری قویمی س., صولتی هشجین م., ابراهیم زاده م. ، آشنایی با مهندسی بافت، مجله جراحی استخوان و مفاصل ایران ،  (4) 37، 190-185 ، 1390.
    9. هاشمی ز., سلیمانی  م. ، داربست های مهندسی بافت: تاریخچه، انواع و روش ساخت ، علوم تشریح ایران ،  (9 ) 35  ، 168- 146 ،1390.
    10. حبیبی س. ، هاشمی ح.، فناوری نانو در نساجی، انتشارات جهاد دانشگاهی واحد صنعتی امیرکبیر،1392.
    11. Ma PX. Scaffolds for tissue fabrication. , Mater. Today, 7(5), 30-40, 2006.
    12. Ashammakhi, N., Wimpenny, I., Nikkola, L., Yang, Y., Electrospinning: methods and development of biodegradable nanofibres for drug release, J. Biomed. Nanotechnol. , 5(1), 1-19, 2009.
    13. Zahmatkeshan, M., Adel, M., Bahrami, S., Esmaeili, F., Rezayat, S.M., Saeedi, Y., Mehravi, B., Jameie, S.B., Ashtari, K., Polymer Based Nanofibers: Preparation, Fabrication, and Applications. Handbook of Nanofibers, 2018.
    14. Heng, F., Tao, Z., Liang, J., Chen, J., Template-directed materials for rechargeable lithium-ion batteries, Chem. Mater., 20(3), 667-681, 2007.
    15. Wang, J., Nain, A.S., Suspended micro/nanofiber hierarchical biological scaffolds fabricated using non-electrospinning STEP technique. Langmuir, 30(45), 13641-13649, 2014.
    16. Samimi Gharaie, S., Habibi, S., Nazockdast, H., Fabrication and characterization of chitosan/gelatin/thermoplastic polyurethane blend nanofibers, J. Text. Fibrous Mater., 1, 2018.
    17. Rim, N.G., Shin, C.S., Shin, H., Current approaches to electrospun nanofibers for tissue engineering. Biomed. Mater., 8(1), 2013.
    18. Taghavi, S.M., Larson, R.G., Regularized thin-fiber model for nanofiber formation by centrifugal spinning, Phys. Rev. E, 89(2), 2014.
    19. Sarkar, K., Gomez, C., Zambrano, S., Ramirez, M., de Hoyos, E., Vasquez, H., Lozano, K., Electrospinning to forcespinning™. Mater. Today, 13(11), 12-14, 2010.
    20. Koosha, K., Habibi, S., Talebian, A., Microstructural Study of Nylon-6/Gelatin Composite Nanofibers, Russ. J. Appl. Chem., 90(10), 1640-1647, 2017.
    21. کوشینا ک.، حبیبی س. ، طالبیان ا.، بررسی ریزساختار نانوالیاف ژلاتین الکتروریسی شده، علوم و فناوری نساجی،(1) 7  ،9-5 ،1397.
    22. Habibi, S., Saket, M., Nazockdast, H. and Hajinasrollah, K., Fabrication and characterization of exfoliated chitosan–gelatin–montmorillonite nanocomposite nanofibers, J. Text. Inst., 1-6, 2019.
    23. Hajinasrollah, K0, Habibi, S0, Nazockdast, H., Fabrication of gelatin–chitosan–gum tragacanth with thermal annealing cross-linking strategy, J. Eng. Fibers Fabr. 14, 2019.
    24. Kiyohiko, H., Toshiya Iwasaki, Process for manufacturing artificial silk and other filaments by applying electric current. U.S. Patent 1,699,615, 1929.
    25. Sridhar, R., Venugopal, J.R., Sundarrajan, S., Ravichandran, R., Ramalingam, B., Ramakrishna, S., Electrospun nanofibers for pharmaceutical and medical applications, J. Drug Delivery Sci. Technol., 21(6), 451-468, 2011.
    26. Szentivanyi, A.L., Zernetsch, H., Menzel, H., Glasmacher, B., A review of developments in electrospinning technology: new opportunities for the design of artificial tissue structures. Int. J. Artif. Organs, 34(10), 986-997, 2011.
    27.  Li, J., Connell, S., Shi, R., Biomimetics Learning from Nature, InTech, 2010.
    28.  Taylor, G.I., Electrically driven jets. Proc. R. Soc. Lond. A, 313(1515), 453-475, 1969.
    29. Bhattarai, R., Bachu, R., Boddu, S., Bhaduri, S., Biomedical applications of electrospun nanofibers: Drug and nanoparticle delivery, Int. J. Pharm., 11(1), 5-35, 2019.
    30. Suresh, S., Semiconductor nanomaterials, methods and applications: a review, J. Nanosci. Nanotechnol. , 3(3), 62-74, 2013.
    31. Qamoshi, K., Rasuli, R., Subwavelength structure for sound absorption from graphene oxide-doped polyvinylpyrrolidone nanofibers, Appl. Phys. A, 122(9), 788-122, 2016.
    32. Ma, H., Hsiao, B.S., Filtering Media by Electrospinning, Springer, Cham, 25-46, 2018.
    33. Dotto, G.L., Santos, J.M.N., Tanabe, E.H., Bertuol, D.A., Foletto, E.L., Lima, E.C. , Pavan, F.A.,Chitosan/polyamide nanofibers prepared by Forcespinning® technology: A new adsorbent to remove anionic dyes from aqueous solutions, J. Cleaner Prod., 144, 120-129, 2017.
    34. Ramakrishna, S., Jose, R., Archana, P.S., Nair, A.S., Balamurugan, R., Venugopal, J. , Teo, W.E., Science and engineering of electrospun nanofibers for advances in clean energy, water filtration, and regenerative medicine, J. Mater. Sci., 45(23), 6283-6312, 2010.
    35. Kim, B.C., Nair, S., Kim, J., Kwak, J.H., Grate, J.W., Kim, S.H. , Gu, M.B., Preparation of biocatalytic nanofibres with high activity and stability via enzyme aggregate coating on polymer nanofibres, Nanotechnol., 16(7), 382-390, 2005.
    36. Kai, D., Liow, S.S., Loh, X.J., Biodegradable polymers for electrospinning: towards biomedical applications, Mater. Sci. Eng., C, 45, 659-670, 2014.
    37. Huang, Z.M., Zhang, Y.Z., Kotaki, M., Ramakrishna, S., A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Compos. Sci. Technol., 63(15), 2223-2253, 2003.
    38. Ramalingam. M., Ramakrishna. S., Nanofiber Composites for Biomedical Applications 507-528, 2017.
    39. Jannesari, M., Varshosaz, J., Morshed, M., Zamani, M., Composite poly (vinyl alcohol)/poly (vinyl acetate) electrospun nanofibrous mats as a novel wound dressing matrix for controlled release of drugs. International journal of nanomedicine, 6, 1003-993, 2011.
    40. Khadka, D.B.; Haynie, D.T. Protein- and peptide-based electrospun nanofibers in medical biomaterials, Nanomed. Nanotechnol. Biol. Med., 8, 1242–1262, 2012.
    41.  Al-Enizi, A., Zagho, M., Elzatahry, A., Polymer-based electrospun nanofibers for biomedical applications, J. Nanomater., 8(4), 259-281, 2018.
    42. Zamani, R., Aval, S.F., Pilehvar-Soltanahmadi, Y., Nejati-Koshki, K., Zarghami, N., Recent advances in cell electrospining of natural and synthetic nanofibers for regenerative medicine, Drug res., 68(08), 425-435, 2018.
    43. Alharbi, H.F., Luqman, M., Khalil, K.A., Elnakady, Y.A., Abd-Elkader, O.H., Rady, A.M., Alharthi, N.H. , Karim, M.R., Fabrication of core-shell structured nanofibers of poly (lactic acid) and poly (vinyl alcohol) by coaxial electrospinning for tissue engineering, Eur. Polym. J., 98, 483-491, 2018.
    44.  Yao, Y., Wang, J., Cui, Y., Xu, R., Wang, Z., Zhang, J., Wang, K., Li, Y., Zhao, Q. , Kong, D., Effect of sustained heparin release from PCL/chitosan hybrid small-diameter vascular grafts on anti-thrombogenic property and endothelialization, Acta Biomater., 10(6), 2739-2749, 2014.
    45. Ye, L., Cao, J., Chen, L., Geng, X., Zhang, A.Y., Guo, L.R., Gu, Y.Q. , Feng, Z.G., The fabrication of double layer tubular vascular tissue engineering scaffold via coaxial electrospinning and its 3D cell coculture, J. Biomed. Mater. Res. Part A, 103(12), 3863-3871, 2015.
    46. Lee, K.Y., Mooney, D.J., Alginate: properties and biomedical applications, Prog. Polym. Sci., 37(1), 106-126, 2012.
    47. Jiang, Y.C., Jiang, L., Huang, A., Wang, X.F., Li, Q. , Turng, L.S., Electrospun polycaprolactone/gelatin composites with enhanced cell–matrix interactions as blood vessel endothelial layer scaffolds, Mater. Sci. Eng., C, 71, 901-908, 2017.
    48. Pektok, E., Nottelet, B., Tille, J.C., Gurny, R., Kalangos, A., Moeller, M. , Walpoth, B.H., Degradation and Healing Characteristics of Small-Diameter Poly (ε-Caprolactone) Vascular Grafts in the Rat Systemic Arterial Circulation, Circ., 118(24), 2563-2570, 2008.
    49. Kaoud, H.A.E.S., Tissue Regeneration, Eds., Cairo University, 2018.
    50. Yu, C.C., Chang, J.J., Lee, Y.H., Lin, Y.C., Wu, M.H., Yang, M.C. , Chien, C.T., Electrospun scaffolds composing of alginate, chitosan, collagen and hydroxyapatite for applying in bone tissue engineering, Mater. Lett. ,93, 133-136, 2013.
    51. Lai, W.Y., Feng, S.W., Chan, Y.H., Chang, W.J., Wang, H.T. , Huang, H.M., In vivo investigation into effectiveness of Fe3O4/PLLA nanofibers for bone tissue engineering applications, Polym., 10(7), 804-817, 2018.
    52. Vig, K., Chaudhari, A., Tripathi, S., Dixit, S., Sahu, R., Pillai, S., Dennis, V.A., Singh, S.R., Advances in skin regeneration using tissue engineering, Int. J. Mol. Sci., 18(4), 789-808, 2017.
    53. Guarino, V., Gloria, A., Raucci, M.G., Ambrosio, L., Hydrogel-based platforms for the regeneration of osteochondral tissue and intervertebral disc, Polym. , 4(3), 1590-1612, 2012.
    54.  Abdul Khodir, W.K.W., Abdul Razak, A.H., Ng, M.H., Guarino, V. , Susanti, D., Encapsulation and Characterization of Gentamicin Sulfate in the Collagen Added Electrospun Nanofibers for Skin Regeneration, J. funct. biomater. , 9(2), 36-45, 2018.
    55.  Lin, H.Y., Chen, H.H., Chang, S.H., Ni, T.S., Pectin-chitosan-PVA nanofibrous scaffold made by electrospinning and its potential use as a skin tissue scaffold, J. Biomater. Sci., Polym. Ed., 24(4), 470-484, 2013.
    56. Pezeshki‐Modaress, M., Rajabi‐Zeleti, S., Zandi, M., Mirzadeh, H., Sodeifi, N., Nekookar, A. and Aghdami, N., Cell‐loaded gelatin/chitosan scaffolds fabricated by salt‐leaching/lyophilization for skin tissue engineering: In vitro and in vivo study, J. Biomed. Mater. Res. Part A, 102(11), 3908-3917, 2014.
    57. Doulabi, A., Mequanint, K., Mohammadi, H., Blends and nanocomposite biomaterials for articular cartilage tissue engineering, Mater. , 7(7), 5327-5355, 2014.
    58. Coburn, J.M., Gibson, M., Monagle, S., Patterson, Z., Elisseeff, J.H., Bioinspired nanofibers support chondrogenesis for articular cartilage repair, Proc. Natl. Acad. Sci. U.S.A., 109(25), 10012-10017, 2012.
    59. Casper, M.E., Fitzsimmons, J.S., Stone, J.J., Meza, A.O., Huang, Y., Ruesink, T.J., O’Driscoll, S.W. , Reinholz, G.G., Tissue engineering of cartilage using poly-ɛ-caprolactone nanofiber scaffolds seeded in vivo with periosteal cells, osteoarthritis and cartilage, 18(7), 981-991, 2010.
    60. Jiang, T., Kai, D., Liu, S., Huang, X., Heng, S., Zhao, J., Chan, B.Q.Y., Loh, X.J., Zhu, Y., Mao, C. , Zheng, L., Mechanically cartilage-mimicking poly (PCL/PTHF urethane)/collagen nanofibers induce chondrogenesis by blocking NF–kappa B signaling pathway, Biomater. , 178, 281-292, 2018.
    61. بصیری ع.، عموعابدینی ق.، واسعی م.، سلیمانی م.، ساخت داربست نانوفیبر هیبریدی PCL/PLGA با قابلیت رهایش کنترل‌شده انسولین به منظور کاربرد آن در مهندسی بافت غضروف ،مجله علمی پژوهشی دانشگاه علوم پزشکی شهید صدوقی یزد، (۳) ۲۲، ۱۱86- ۱۱75، 1393.
    62. Navarro, X., Rodriguez, F.J., Ceballos, D., Verdu, E., Engineering an artificial nerve graft for the repair of severe nerve injuries, Med. Biol. Eng. Comput., 41(2), 220-226, 2003.
    63. Miller, R.J., R.J., Chan, C.Y., Rastogi, A., Grant, A.M., White, C.M., Bette, N., Schaub, N.J., Corey, J.M., Combining electrospun nanofibers with cell-encapsulating hydrogel fibers for neural tissue engineering, J. Biomater. Sci., 29(13) ,1625-1642, 2018.
    64. Zhan, X., Gao, M., Jiang, Y., Zhang, W., Wong, W.M., Yuan, Q., Su, H., Kang, X., Dai, X., Zhang, W. , Guo, J., Nanofiber scaffolds facilitate functional regeneration of peripheral nerve injury. Nanomedicine: Nanotechnology, Biol. Med., 9(3), 305-315, 2013.
    65. Entekhabi, E., Nazarpak, M.H., Moztarzadeh, F. , Sadeghi, A., Design and manufacture of neural tissue engineering scaffolds using hyaluronic acid and polycaprolactone nanofibers with controlled porosity, Mater. Sci. Eng., C, 69, 380-387, 2016.
    66. نیکبخت کتولی س., دوست محمدی ع., اسماعیلی ف. ، ساخت داربست نانوکامپوزیتی کیتوسان/ پلی وینیل الکل/ نانولوله کربنی/ شیشه زیست فعال برای مهندسی بافت عصب ، مواد پیشرفته در مهندسی، (1)35، 46 - 35 ،1395.
    67. Kai, D., Prabhakaran, M.P., Jin, G., Ramakrishna, S., Guided orientation of cardiomyocytes on electrospun aligned nanofibers for cardiac tissue engineering, J. Biomed. Mater. Res. Part B, 98(2), 379-386, 2011.
    68. Ramalingam, M., & Ramakrishna, S., Nanofiber Composites for Biomedical Applications, Woodhead Publishing, 411-453, 2017.
    69. جعفری س., صادقی د., یوسف زاده م., سلوک ع.، داربست های نانوالیافی ساخته شده به روش الکتروریسی برای بازسازی عروق آسیب دیده، علوم و فناوری نساجی، (4) 5، 77-67، 1394.
    70. Chen, P.H., Liao, H.C., Hsu, S.H., Chen, R.S., Wu, M.C., Yang, Y.F., Wu, C.C., Chen, M.H. ,Su, W.F., A novel polyurethane/cellulose fibrous scaffold for cardiac tissue engineering, RSC Adv., 5(9), 6932-6939, 2015.
    71. Kitsara, M., Agbulut, O., Kontziampasis, D., Chen, Y., Menasché, P., Fibers for hearts: A critical review on electrospinning for cardiac tissue engineering, Acta biomater. , 48, 20-40, 2017.
    72. Sill, T.J., von Recum, H.A., Electrospinning: applications in drug delivery and tissue engineering, Biomater. , 29(13), 1989-2006, 2008.
    73. Cui, Z., Zheng, Z., Lin, L., Si, J., Wang, Q., Peng, X. , Chen, W., Electrospinning and crosslinking of polyvinyl alcohol/chitosan composite nanofiber for transdermal drug delivery, Adv. Polym. Tech., 37(6), 1917-1928, 2018.
    74. Meng, Z.X., Xu, X.X., Zheng, W., Zhou, H.M., Li, L., Zheng, Y.F. , Lou, X., Preparation and characterization of electrospun PLGA/gelatin nanofibers as a potential drug delivery system, Colloids Surf., B, 84(1), 97-102, 2011.
    75. دیناری م., بینا ف., خیامیان ت.، تهیه، شناسایی و بررسی رهایش پیوسته داروی سلکوکسیب از نانوالیاف پلی لاکتیک اسید, شیمى کاربردى،(48) 13, 52-41، 1397.
    76. ملک نیا ل., دیلمیان م., حکمت ا.، تولید نانوالیاف پوسته-مغزی پلی یورتان- کیتوسان و پلی یورتان-پلی اتیلن اکساید، علوم و فناوری نساجی، (2) 7، 45-37 ، 1397.
    77.  Shi, R., Geng, H., Gong, M., Ye, J., Wu, C., Hu, X., Zhang, L., Long-acting and broad-spectrum antimicrobial electrospun poly (ε-caprolactone)/gelatin micro/nanofibers for wound dressing, J. Colloid Interface Sci., 509, 275-284, 2018.
    78. Field, C.K., Kerstein, M.D., Overview of wound healing in a moist environment, Am. J. surg., 167(1), S2-S6, 1994.
    79. Tian, L., Prabhakaran, M.P., Ding, X., Kai, D., Ramakrishna, S., Emulsion electrospun vascular endothelial growth factor encapsulated poly (l-lactic acid-co-ε-caprolactone) nanofibers for sustained release in cardiac tissue engineering, J. Mater. Sci., 47(7), 3272-3281, 2012.
    80. Jayakumar, R., Prabaharan, M., Kumar, P.S., Nair, S.V., Tamura, H., Biomaterials based on chitin and chitosan in wound dressing applications, Biotechnol. Adv., 29(3), 322-337, 2011.
    81. Kossovich, L.Y., Salkovskiy, Y., Kirillova, I.V., Electrospun chitosan nanofiber materials as burn dressing, 6th World Congress of Biomechanics, Springer, Berlin, Heidelberg, 2010.
    82. Ranjbar-Mohammadi, M., Rabbani, S., Bahrami, S.H., Joghataei, M.T., Moayer, F., Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly (ε-caprolactone) electrospun nanofibers, Mater. Sci. Eng., C, 69, 1183-1191, 2016.
    83. Unnithan, A.R., Barakat, N.A., Pichiah, P.T., Gnanasekaran, G., Nirmala, R., Cha, Y.S., Jung, C.H., El-Newehy, M., Kim, H.Y., Wound-dressing materials with antibacterial activity from electrospun polyurethane–dextran nanofiber mats containing ciprofloxacin HCl, Carbohydr. Polym. , 90(4), 1786-1793, 2012.